67 research outputs found

    Maternal rank influences the outcome of aggressive interactions between immature chimpanzees

    Get PDF
    © 2014 The Association for the Study of Animal Behaviour.For many long-lived mammalian species, extended maternal investment has a profound effect on offspring integration in complex social environments. One component of this investment may be aiding young in aggressive interactions, which can set the stage for offspring social position later in life. Here we examined maternal effects on dyadic aggressive interactions between immature (<12 years) chimpanzees. Specifically, we tested whether relative maternal rank predicted the probability of winning an aggressive interaction. We also examined maternal responses to aggressive interactions to determine whether maternal interventions explain interaction outcomes. Using a 12-year behavioural data set (2000-2011) from Gombe National Park, Tanzania, we found that relative maternal rank predicted the probability of winning aggressive interactions in male-male and male-female aggressive interactions: offspring were more likely to win if their mother outranked their opponent's mother. Female-female aggressive interactions occurred infrequently (two interactions), so could not be analysed. The probability of winning was also higher for relatively older individuals in male-male interactions, and for males in male-female interactions. Maternal interventions were rare (7.3% of 137 interactions), suggesting that direct involvement does not explain the outcome for the vast majority of aggressive interactions. These findings provide important insight into the ontogeny of aggressive behaviour and early dominance relationships in wild apes and highlight a potential social advantage for offspring of higher-ranking mothers. This advantage may be particularly pronounced for sons, given male philopatry in chimpanzees and the potential for social status early in life to translate more directly to adult rank

    Community-specific evaluation of tool affordances in wild chimpanzees

    Get PDF
    The notion of animal culture, defined as socially transmitted community-specific behaviour patterns, remains controversial, notably because the definition relies on surface behaviours without addressing underlying cognitive processes. In contrast, human cultures are the product of socially acquired ideas that shape how individuals interact with their environment. We conducted field experiments with two culturally distinct chimpanzee communities in Uganda, which revealed significant differences in how individuals considered the affording parts of an experimentally provided tool to extract honey from a standardised cavity. Firstly, individuals of the two communities found different functional parts of the tool salient, suggesting that they experienced a cultural bias in their cognition. Secondly, when the alternative function was made more salient, chimpanzees were unable to learn it, suggesting that prior cultural background can interfere with new learning. Culture appears to shape how chimpanzees see the world, suggesting that a cognitive component underlies the observed behavioural patterns

    CHIIMP: An automated high-throughput microsatellite genotyping approach reveals greater allelic diversity in wild chimpanzees

    Get PDF
    Short tandem repeats (STRs), also known as microsatellites, are commonly used to non invasively genotype wild-living endangered species, including African apes. Until recently, capillary electrophoresis has been the method of choice to determine the length of polymorphic STR loci. However, this technique is labor intensive, difficult to compare across platforms, and notoriously imprecise. Here we developed a MiSeq-based approach and tested its performance using previously genotyped fecal samples from long-term studied chimpanzees in Gombe National Park, Tanzania. Using data from eight microsatellite loci as a reference, we designed a bioinformatics platform that converts raw MiSeq reads into locus-specific files and automatically calls alleles after filtering stutter sequences and other PCR artifacts. Applying this method to the entire Gombe population, we confirmed previously reported genotypes, but also identified 31 new alleles that had been missed due to sequence differences and size homoplasy. The new genotypes, which increased the allelic diversity and heterozygosity in Gombe by 61% and 8%, respectively, were validated by replicate amplification and pedigree analyses. This demonstrated inheritance and resolved one case of an ambiguous paternity. Using both singleplex and multiplex locus amplification, we also genotyped fecal samples from chimpanzees in the Greater Mahale Ecosystem in Tanzania, demonstrating the utility of the MiSeq-based approach for genotyping non-habituated populations and performing comparative analyses across field sites. The new automated high-throughput analysis platform (available at https://github.com/ShawHahnLab/chiimp) will allow biologists to more accurately and effectively determine wildlife population size and structure, and thus obtain information critical for conservation efforts

    Differences in the Cognitive Skills of Bonobos and Chimpanzees

    Get PDF
    While bonobos and chimpanzees are both genetically and behaviorally very similar, they also differ in significant ways. Bonobos are more cautious and socially tolerant while chimpanzees are more dependent on extractive foraging, which requires tools. The similarities suggest the two species should be cognitively similar while the behavioral differences predict where the two species should differ cognitively. We compared both species on a wide range of cognitive problems testing their understanding of the physical and social world. Bonobos were more skilled at solving tasks related to theory of mind or an understanding of social causality, while chimpanzees were more skilled at tasks requiring the use of tools and an understanding of physical causality. These species differences support the role of ecological and socio-ecological pressures in shaping cognitive skills over relatively short periods of evolutionary time

    Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees

    Get PDF
    The authors are grateful to the Royal Zoological Society of Scotland for providing core funding for the Budongo Conservation Field Station. The fieldwork of CH was funded by the Leverhulme Trust, the Lucie Burgers Stichting, and the British Academy. TP was funded by the Canadian Research Chair in Continental Ecosystem Ecology, and received computational support from the Theoretical Ecosystem Ecology group at UQAR. The research leading to these results has received funding from the People Programme (Marie Curie Actions) and from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013) REA grant agreement n°329197 awarded to TG, ERC grant agreement n° 283871 awarded to KZ. WH was funded by a BBSRC grant (BB/I007997/1).Social network analysis methods have made it possible to test whether novel behaviors in animals spread through individual or social learning. To date, however, social network analysis of wild populations has been limited to static models that cannot precisely reflect the dynamics of learning, for instance, the impact of multiple observations across time. Here, we present a novel dynamic version of network analysis that is capable of capturing temporal aspects of acquisition-that is, how successive observations by an individual influence its acquisition of the novel behavior. We apply this model to studying the spread of two novel tool-use variants, "moss-sponging'' and "leaf-sponge re-use,'' in the Sonso chimpanzee community of Budongo Forest, Uganda. Chimpanzees are widely considered the most "cultural'' of all animal species, with 39 behaviors suspected as socially acquired, most of them in the domain of tool-use. The cultural hypothesis is supported by experimental data from captive chimpanzees and a range of observational data. However, for wild groups, there is still no direct experimental evidence for social learning, nor has there been any direct observation of social diffusion of behavioral innovations. Here, we tested both a static and a dynamic network model and found strong evidence that diffusion patterns of moss-sponging, but not leaf-sponge re-use, were significantly better explained by social than individual learning. The most conservative estimate of social transmission accounted for 85% of observed events, with an estimated 15-fold increase in learning rate for each time a novice observed an informed individual moss-sponging. We conclude that group-specific behavioral variants in wild chimpanzees can be socially learned, adding to the evidence that this prerequisite for culture originated in a common ancestor of great apes and humans, long before the advent of modern humans.Publisher PDFPeer reviewe

    Sex Bias and Social Influences on Savanna Chimpanzee (Pan troglodytes verus) Nest Building Behavior

    Get PDF
    Many primates show sex differences in behavior, particularly social behavior, but also tool use for extractive foraging. All great apes learn to build a supportive structure for sleep. Whether sex differences exist in building, as in extractive foraging, is unknown, and little is known about how building skills develop and vary between individuals in the wild. We therefore aimed to describe the nesting behavior of savanna chimpanzees (Pan troglodytes verus) in Fongoli, Senegal, to provide comparative data and to investigate possible sex or age differences in nest building behaviors and nest characteristics. We followed chimpanzee groups to their night nesting sites to record group (55 nights) and individual level data (17 individuals) on nest building initiation and duration (57 nests) during the dry season between October 2007 and March 2008. We returned the following morning to record nest and tree characteristics (71 nests built by 25 individuals). Fongoli chimpanzees nested later than reported for other great apes, but no sex differences in initiating building emerged. Observations were limited but suggest adult females and immature males to nest higher, in larger trees than adult males, and adult females to take longer to build than either adult or immature males. Smaller females and immature males may avoid predation or access thinner, malleable branches, by nesting higher than adult males. These differences suggest that sex differences described for chimpanzee tool use may extend to nest-building, with females investing more time and effort in constructing a safe, warm structure for sleep than males do

    Why Do Dolphins Carry Sponges?

    Get PDF
    Tool use is rare in wild animals, but of widespread interest because of its relationship to animal cognition, social learning and culture. Despite such attention, quantifying the costs and benefits of tool use has been difficult, largely because if tool use occurs, all population members typically exhibit the behavior. In Shark Bay, Australia, only a subset of the bottlenose dolphin population uses marine sponges as tools, providing an opportunity to assess both proximate and ultimate costs and benefits and document patterns of transmission. We compared sponge-carrying (sponger) females to non-sponge-carrying (non-sponger) females and show that spongers were more solitary, spent more time in deep water channel habitats, dived for longer durations, and devoted more time to foraging than non-spongers; and, even with these potential proximate costs, calving success of sponger females was not significantly different from non-spongers. We also show a clear female-bias in the ontogeny of sponging. With a solitary lifestyle, specialization, and high foraging demands, spongers used tools more than any non-human animal. We suggest that the ecological, social, and developmental mechanisms involved likely (1) help explain the high intrapopulation variation in female behaviour, (2) indicate tradeoffs (e.g., time allocation) between ecological and social factors and, (3) constrain the spread of this innovation to primarily vertical transmission

    Barriers to chimpanzee gene flow at the south-east edge of their distribution.

    Get PDF
    Populations on the edge of a species' distribution may represent an important source of adaptive diversity, yet these populations tend to be more fragmented and are more likely to be geographically isolated. Lack of genetic exchanges between such populations, due to barriers to animal movement, can not only compromise adaptive potential but also lead to the fixation of deleterious alleles. The south-eastern edge of chimpanzee distribution is particularly fragmented, and conflicting hypotheses have been proposed about population connectivity and viability. To address this uncertainty, we generated both mitochondrial and MiSeq-based microsatellite genotypes for 290 individuals ranging across western Tanzania. While shared mitochondrial haplotypes confirmed historical gene flow, our microsatellite analyses revealed two distinct clusters, suggesting two populations currently isolated from one another. However, we found evidence of high levels of gene flow maintained within each of these clusters, one of which covers an 18,000 km2 ecosystem. Landscape genetic analyses confirmed the presence of barriers to gene flow with rivers and bare habitats highly restricting chimpanzee movement. Our study demonstrates how advances in sequencing technologies, combined with the development of landscape genetics approaches, can resolve ambiguities in the genetic history of critical populations and better inform conservation efforts of endangered species

    Evidence for Emulation in Chimpanzees in Social Settings Using the Floating Peanut Task

    Get PDF
    The authors have no support or funding to report.Background: It is still unclear which observational learning mechanisms underlie the transmission of difficult problem-solving skills in chimpanzees. In particular, two different mechanisms have been proposed: imitation and emulation. Previous studies have largely failed to control for social factors when these mechanisms were targeted. Methods: In an attempt to resolve the existing discrepancies, we adopted the 'floating peanut task', in which subjects need to spit water into a tube until it is sufficiently full for floating peanuts to be grasped. In a previous study only a few chimpanzees were able to invent the necessary solution (and they either did so in their first trials or never). Here we compared success levels in baseline tests with two experimental conditions that followed: 1) A full model condition to test whether social demonstrations would be effective, and 2) A social emulation control condition, in which a human experimenter poured water from a bottle into the tube, to test whether results information alone (present in both experimental conditions) would also induce successes. Crucially, we controlled for social factors in both experimental conditions. Both types of demonstrations significantly increased successful spitting, with no differences between demonstration types. We also found that younger subjects were more likely to succeed than older ones. Our analysis showed that mere order effects could not explain our results. Conclusion: The full demonstration condition (which potentially offers additional information to observers, in the form of actions), induced no more successes than the emulation condition. Hence, emulation learning could explain the success in both conditions. This finding has broad implications for the interpretation of chimpanzee traditions, for which emulation learning may perhaps suffice.Publisher PDFPeer reviewe

    Posture Does Not Matter! Paw Usage and Grasping Paw Preference in a Small-Bodied Rooting Quadrupedal Mammal

    Get PDF
    BACKGROUND: Recent results in birds, marsupials, rodents and nonhuman primates suggest that phylogeny and ecological factors such as body size, diet and postural habit of a species influence limb usage and the direction and strength of limb laterality. To examine to which extent these findings can be generalised to small-bodied rooting quadrupedal mammals, we studied trees shrews (Tupaia belangeri). METHODOLOGY/PRINCIPAL FINDINGS: We established a behavioural test battery for examining paw usage comparable to small-bodied primates and tested 36 Tupaia belangeri. We studied paw usage in a natural foraging situation (simple food grasping task) and measured the influence of varying postural demands (triped, biped, cling, sit) on paw preferences by applying a forced-food grasping task similar to other small-bodied primates. Our findings suggest that rooting tree shrews prefer mouth over paw usage to catch food in a natural foraging situation. Moreover, we demonstrated that despite differences in postural demand, tree shrews show a strong and consistent individual paw preference for grasping across different tasks, but no paw preference at a population level. CONCLUSIONS/SIGNIFICANCE: Tree shrews showed less paw usage than small-bodied quadrupedal and arboreal primates, but the same paw preference. Our results confirm that individual paw preferences remain constant irrespective of postural demand in some small-bodied quadrupedal non primate and primate mammals which do not require fine motoric control for manipulating food items. Our findings suggest that the lack of paw/hand preference for grasping food at a population level is a universal pattern among those species and that the influence of postural demand on manual lateralisation in quadrupeds may have evolved in large-bodied species specialised in fine manipulations of food items
    • …
    corecore