53 research outputs found

    Genomic innovations linked to infection strategies across emerging pathogenic chytrid fungi

    Get PDF
    We acknowledge the Broad Institute Sequencing Platform and Imperial College London for generating the DNA and RNA sequence described here. Financial support was provided by a UK Natural Environmental Research Council (NERC NE/K012509/1) grant to MCF, a Wellcome Trust Fellowship to RF, a Morris Animal Foundation grant to FP, and by the National Human Genome Research Institute grant number U54HG003067 to the Broad Institute. E.V. is supported by the Research Foundation Flanders (FWO grant 12E6616N).Peer reviewedPublisher PD

    Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15 years of amphibian chytridiomycosis research

    Full text link
    The amphibian fungal disease chytridiomycosis, which affects species across all continents, recently emerged as one of the greatest threats to biodiversity. Yet, many aspects of the basic biology and epidemiology of the pathogen, Batrachochytrium dendrobatidis (Bd), are still unknown, such as when and from where did Bd emerge and what is its true ecological niche? Here, we review the ecology and evolution of Bd in the Americas and highlight controversies that make this disease so enigmatic. We explore factors associated with variance in severity of epizootics focusing on the disease triangle of host susceptibility, pathogen virulence, and environment. Reevaluating the causes of the panzootic is timely given the wealth of data on Bd prevalence across hosts and communities and the recent discoveries suggesting co‐evolutionary potential of hosts and Bd. We generate a new species distribution model for Bd in the Americas based on over 30,000 records and suggest a novel future research agenda. Instead of focusing on pathogen “hot spots,” we need to identify pathogen “cold spots” so that we can better understand what limits the pathogen's distribution. Finally, we introduce the concept of “the Ghost of Epizootics Past” to discuss expected patterns in postepizootic host communities.We review the ecology and evolution of amphibian fungal disease chytridiomycosis in the Americas, where it has recently emerged as one of the greatest threats to biodiversity and highlight controversies that make this disease so enigmatic. We explore factors associated with variance in severity of epizootics focusing on the disease triangle of host susceptibility, pathogen virulence, and environment. We generate a new species distribution model for Bd in the Americas based on over 30,000 records, which suggests emphasis needs to be placed on studying pathogen “cold spots” so that we can better understand what biotic and abiotic factors limit the pathogen's distribution.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/113682/1/ece31672_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/113682/2/ece31672.pd

    Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data

    Get PDF
    Understanding the evolutionary history of microbial pathogens is critical for mitigating the impacts of emerging infectious diseases on economically and ecologically important host species. We used a genome resequencing approach to resolve the evolutionary history of an important microbial pathogen, the chytrid Batrachochytrium dendrobatidis (Bd), which has been implicated in amphibian declines worldwide. We sequenced the genomes of 29 isolates of Bd from around the world, with an emphasis on North, Central, and South America because of the devastating effect that Bd has had on amphibian populations in the New World. We found a substantial amount of evolutionary complexity in Bd with deep phylogenetic diversity that predates observed global amphibian declines. By investigating the entire genome, we found that even the most recently evolved Bd clade (termed the global panzootic lineage) contained more genetic variation than previously reported. We also found dramatic differences among isolates and among genomic regions in chromosomal copy number and patterns of heterozygosity, suggesting complex and heterogeneous genome dynamics. Finally, we report evidence for selection acting on the Bd genome, supporting the hypothesis that protease genes are important in evolutionary transitions in this group. Bd is considered an emerging pathogen because of its recent effects on amphibians, but our data indicate that it has a complex evolutionary history that predates recent disease outbreaks. Therefore, it is important to consider the contemporary effects of Bd in a broader evolutionary context and identify specific mechanisms that may have led to shifts in virulence in this system.Instituto de BotĂĄnica "Dr. Carlos Spegazzini

    Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data

    Get PDF
    Understanding the evolutionary history of microbial pathogens is critical for mitigating the impacts of emerging infectious diseases on economically and ecologically important host species. We used a genome resequencing approach to resolve the evolutionary history of an important microbial pathogen, the chytrid Batrachochytrium dendrobatidis (Bd), which has been implicated in amphibian declines worldwide. We sequenced the genomes of 29 isolates of Bd from around the world, with an emphasis on North, Central, and South America because of the devastating effect that Bd has had on amphibian populations in the New World. We found a substantial amount of evolutionary complexity in Bd with deep phylogenetic diversity that predates observed global amphibian declines. By investigating the entire genome, we found that even the most recently evolved Bd clade (termed the global panzootic lineage) contained more genetic variation than previously reported. We also found dramatic differences among isolates and among genomic regions in chromosomal copy number and patterns of heterozygosity, suggesting complex and heterogeneous genome dynamics. Finally, we report evidence for selection acting on the Bd genome, supporting the hypothesis that protease genes are important in evolutionary transitions in this group. Bd is considered an emerging pathogen because of its recent effects on amphibians, but our data indicate that it has a complex evolutionary history that predates recent disease outbreaks. Therefore, it is important to consider the contemporary effects of Bd in a broader evolutionary context and identify specific mechanisms that may have led to shifts in virulence in this system.Instituto de BotĂĄnica "Dr. Carlos Spegazzini

    Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi

    Get PDF
    T.W.J.G., M.C.F., D.S.S., A.L., E.C., F.C.C., J.B., A.A.C., C.M., F.S., B.R.S., S.O., were supported through the Biodiversa project RACE: Risk Assessment of Chytridiomycosis to European Amphibian Biodiversity (NERC standard grant NE/K014455/1 and NE/E006701/1; ANR-08-BDVA-002-03). M.C.F., J.S., C.W., P.G. were supported by the Leverhulme Trust (RPG-2014-273), M.C.F., A.C., C.W. were supported by the Morris Animal Foundation. J.V. was supported by the Bolyai JĂĄnos Research Grant of the Hunagrian Academy of Sciences (BO/00597/14). F.G. and D.G. were supported by the Conservation Leadership Programme Future Conservationist Award. C.S.A. was supported by Fondecyt (No. 1181758). M.C.F. and A.C. were supported by. Mohamed bin Zayed Species Conservation Fund Project (152510704). GMR held a doctoral scholarship (SFRH/BD/69194/2010) from Fundação para a CiĂȘncia e a Tecnologia. L.F.T., C.L., L.P.R. K.R.Z., T.Y.J., T.S.J. were supported by SĂŁo Paulo Research Foundation (FAPESP #2016/25358-3), the National Counsel of Technological and Scientific Development (CNPq #300896/2016–6) and a Catalyzing New International Collaborations grant from the United States NSF (OISE-1159513). C.S.A. was supported by Fondecyt (No. 1181758). T.M.D. was supported by the Royal Geographical Society and the Royal Zoological Society of Scotland. B.W. was supported by the National Research Foundation of Korea (2015R1D1A1A01057282).Peer reviewedPublisher PD

    Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi

    Get PDF
    © The Author(s) 2018.Parasitic chytrid fungi have emerged as a significant threat to amphibian species worldwide, necessitating the development of techniques to isolate these pathogens into culture for research purposes. However, early methods of isolating chytrids from their hosts relied on killing amphibians. We modified a pre-existing protocol for isolating chytrids from infected animals to use toe clips and biopsies from toe webbing rather than euthanizing hosts, and distributed the protocol to researchers as part of the BiodivERsA project RACE; here called the RML protocol. In tandem, we developed a lethal procedure for isolating chytrids from tadpole mouthparts. Reviewing a database of use a decade after their inception, we find that these methods have been applied across 5 continents, 23 countries and in 62 amphibian species. Isolation of chytrids by the non-lethal RML protocol occured in 18% of attempts with 207 fungal isolates and three species of chytrid being recovered. Isolation of chytrids from tadpoles occured in 43% of attempts with 334 fungal isolates of one species (Batrachochytrium dendrobatidis) being recovered. Together, these methods have resulted in a significant reduction and refinement of our use of threatened amphibian species and have improved our ability to work with this group of emerging pathogens.T.W.J.G., M.C.F., D.S.S., A.L., E.C., F.C.C., J.B., A.A.C., C.M., F.S., B.R.S., S.O., were supported through the Biodiversa project RACE: Risk Assessment of Chytridiomycosis to European Amphibian Biodiversity (NERC standard grant NE/K014455/1 and NE/E006701/1; ANR-08-BDVA-002-03). M.C.F., J.S., C.W., P.G. were supported by the Leverhulme Trust (RPG-2014-273), M.C.F., A.C., C.W. were supported by the Morris Animal Foundation. J.V. was supported by the Bolyai JĂĄnos Research Grant of the Hunagrian Academy of Sciences (BO/00597/14). F.G. and D.G. were supported by the Conservation Leadership Programme Future Conservationist Award. C.S.A. was supported by Fondecyt (No. 1181758). M.C.F. and A.C. were supported by. Mohamed bin Zayed Species Conservation Fund Project (152510704). GMR held a doctoral scholarship (SFRH/ BD/69194/2010) from Fundação para a CiĂȘncia e a Tecnologia. L.F.T., C.L., L.P.R. K.R.Z., T.Y.J., T.S.J. were supported by SĂŁo Paulo Research Foundation (FAPESP #2016/25358-3), the National Counsel of Technological and Scientifc Development (CNPq #300896/2016–6) and a Catalyzing New International Collaborations grant from the United States NSF (OISE-1159513). C.S.A. was supported by Fondecyt (No. 1181758). T.M.D. was supported by the Royal Geographical Society and the Royal Zoological Society of Scotland. B.W. was supported by the National Research Foundation of Korea (2015R1D1A1A01057282).Peer Reviewe

    Rhizophydium brooksianum

    No full text

    Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis

    Get PDF
    An overview of the morphology and life cycle of Batrachochytrium dendrobatidis, the cause of chytridiomycosis of amphibians, is presented. We used a range of methods to examine stages of the life cycle in culture and in frog skin, and to assess ultrastructural pathology in two frogs. Methods included light microscopy, transmission electron microscopy with conventional methods as well as high pressure freezing and freeze substitution, and scanning electron microscopy with critical point drying to prepare samples as well as examination of bulk-frozen and freeze-fractured material. Although chytridiomycosis is an emerging disease, B. dendrobatidis has adaptations that suggest it has long been evolved to live within cells in the dynamic tissue of the stratified epidermis. Sporangia develop at a rate that coincides with the maturation of the cell and fungal discharge tubes usually open onto the distal surface of epidermal cells of the stratum corneum. A zone of condensed fibrillar cytoplasm occurred around some sporangia. Hyperkeratosis may be due to a hyperplastic response that leads to an increased turnover of epidermal cells and to premature keratinization and death of infected cells

    Fungal diseases in amphibians

    No full text
    The largest section of this chapter reviews chytridiomycosis, which has caused the decline\ud and extinction of a multitude of amphibian species worldwide, and is the most devastating disease of wildlife on record. Oomycete infection of eggs in the United States\ud has also been linked to localized amphibian declines and is reviewed in detail. Diseases due to Mucor amphibiorum and Ichthyophonus sp. have caused mortality in wild amphibians\ud and are described in the last section although they have not been associated with population declines. Fungal diseases known only from captive amphibians, or fungal infection of wild amphibians not associated with disease, are not described. For a comprehensive description\ud of fungal diseases in amphibians, including pathology and treatment, see Wright and Whitaker (2001). Although systemic fungal infections in mammals are usually associated\ud with immunosuppression, many fungi are common primary pathogens in aquatic animals such as fish, crustaceans and amphibians (Reichenbach-Klinke and Elkan 1965)
    • 

    corecore