26 research outputs found

    DTT - Divertor Tokamak Test facility: A testbed for DEMO

    Get PDF
    The effective treatment of the heat and power exhaust is a critical issue in the road map to the realization of the fusion energy. In order to provide possible, reliable, well assessed and on-time answers to DEMO, the Divertor Tokamak Test facility (DTT) has been conceived and projected to be carried out and operated within the European strategy in fusion technology. This paper, based on the invited plenary talk at the 31st virtual SOFT Conference 2020, provides an overview of the DTT scientific proposal, which is deeply illustrated in the 2019 DTT Interim Design Report

    DTT - Divertor Tokamak Test facility - Interim Design Report

    Get PDF
    The “Divertor Tokamak Test facility, DTT” is a milestone along the international program aimed at demonstrating – in the second half of this century – the feasibility of obtaining to commercial electricity from controlled thermonuclear fusion. DTT is a Tokamak conceived and designed in Italy with a broad international vision. The construction will be carried out in the ENEA Frascati site, mainly supported by national funds, complemented by EUROfusion and European incentive schemes for innovative investments. The project team includes more than 180 high-standard researchers from ENEA, CREATE, CNR, INFN, RFX and various universities. The volume, entitled DTT Interim Design Report (“Green Book” from the colour of the cover), briefly describes the status of the project, the planning of the design future activities and its organizational structure. The publication of the Green Book also provides an occasion for thorough discussions in the fusion community and a broad international collaboration on the DTT challenge

    Physics research on the TCV tokamak facility: from conventional to alternative scenarios and beyond

    Get PDF
    The research program of the TCV tokamak ranges from conventional to advanced-tokamak scenarios and alternative divertor configurations, to exploratory plasmas driven by theoretical insight, exploiting the device’s unique shaping capabilities. Disruption avoidance by real-time locked mode prevention or unlocking with electron-cyclotron resonance heating (ECRH) was thoroughly documented, using magnetic and radiation triggers. Runaway generation with high-Z noble-gas injection and runaway dissipation by subsequent Ne or Ar injection were studied for model validation. The new 1 MW neutral beam injector has expanded the parameter range, now encompassing ELMy H-modes in an ITER-like shape and nearly non-inductive H-mode discharges sustained by electron cyclotron and neutral beam current drive. In the H-mode, the pedestal pressure increases modestly with nitrogen seeding while fueling moves the density pedestal outwards, but the plasma stored energy is largely uncorrelated to either seeding or fueling. High fueling at high triangularity is key to accessing the attractive small edge-localized mode (type-II) regime. Turbulence is reduced in the core at negative triangularity, consistent with increased confinement and in accord with global gyrokinetic simulations. The geodesic acoustic mode, possibly coupled with avalanche events, has been linked with particle flow to the wall in diverted plasmas. Detachment, scrape-off layer transport, and turbulence were studied in L- and H-modes in both standard and alternative configurations (snowflake, super-X, and beyond). The detachment process is caused by power ‘starvation’ reducing the ionization source, with volume recombination playing only a minor role. Partial detachment in the H-mode is obtained with impurity seeding and has shown little dependence on flux expansion in standard single-null geometry. In the attached L-mode phase, increasing the outer connection length reduces the in–out heat-flow asymmetry. A doublet plasma, featuring an internal X-point, was achieved successfully, and a transport barrier was observed in the mantle just outside the internal separatrix. In the near future variable-configuration baffles and possibly divertor pumping will be introduced to investigate the effect of divertor closure on exhaust and performance, and 3.5 MW ECRH and 1 MW neutral beam injection heating will be added

    Vertical displacement events analysis using MAXFEA code in combination with ANSYS APDL in the final design stage of the DTT vacuum vessel

    No full text
    In the context of the Divertor Tokamak Test facility (DTT) project, a recently developed procedure based on the use of MAXFEA code in combination with ANSYS APDL already presented in [1] has been applied to study the EM and structural response of the DTT vacuum vessel (VV) during plasma Vertical Displacement Events (VDEs). From this study, it has emerged that the vacuum vessel mechanical response is acceptable in all of the scenarios but, during a particular event, namely the down-ward VDE slow scenario, a localized stress concentration in the lower side of the vacuum vessel has emerged. Downstream this analysis, mechanical reinforcements in this zone have been introduced in order to optimize the design. The aim of the paper is to show the successful application of this procedure in this context and its reliability as supporting tool in the final stage optimization design of these kind of components. The abovementioned down-ward VDE slow scenario is reported, showing a vertical force peak of around -10MN as the result of the combination of eddy and halo currents during the Current Quench (CQ). The structural analysis highlights that the EM loads occurring at this time instant produce a stress concentration localized in correspondence of the connection of the pedestal with the VV outer shell. This stress concentration has suggested to reinforce this zone in order to optimize the vacuum vessel design

    Barley starch

    Get PDF
    This thesis examined barley amylopectin structure and looked for correlations between the structure and physical properties of starch. The structure of amylopectin and gelatinisation and retrogradation of starch were studied in 10 different barley cultivars/breeding lines with differing genetic background. Amylopectin is built up of thousands of chains of glucose monomers, organised into clusters. The detailed fine structure of amylopectin was studied by isolating clusters of amylopectin and their building blocks, which are the tightly branched units building up the clusters. Barley cultivars/breeding lines possessing the amo1 mutation had fewer long chains of DP≄38 in amylopectin and more large building blocks. The structure of building blocks was rather conserved between the different barley cultivars/breeding lines studied and was categorized into different size groups. These different building blocks were shown to be randomly distributed in the amylopectin molecule. The C-chains in amylopectin can be of any length and are a category of chains different from the B-chains. The backbone in amylopectin consists of a special type of B-chains which, when cleaved by α-amylase, become chains of a similar type to C-chains. Gelatinisation and retrogradation (recrystallisation of gelatinised starch) of barley starch was studied by differential scanning calorimetry. The amo1 mutation resulted in a broader gelatinisation temperature range and a higher enthalpy of retrogradation. Other structural features were also found to influence the physical properties of starch. Small clusters and denser structure of the building blocks resulted in higher gelatinisation temperature. Fast retrogradation was observed in barley which had amylopectin with shorter chains and many large building blocks consisting of many chains. Amylopectin structure was also studied in developing barley kernels. Three barley cultivars/breeding lines were grown in a phytotron and kernels were harvested at 9, 12 and 24 days after flowering. The results showed that amylopectin synthesized at later stages of development had a more tightly branched structure. Expression of the enzymes involved in starch biosynthesis is also known to change during endosperm development
    corecore