433 research outputs found
CERN decelerating RFQ for antiprotons
A new decelerating radio frequency quadrupole (RFQD) has been put in operation at CERN. It decelerates either protons or antiprotons from a momentum of 100 MeV/c (kinetic energy 5.33 MeV) down to a kinetic energy variable between ~10 keV and 120 keV. A novel feature is the implementation of a floating internal RF structure, mounted on HV insulators. It allows continuous post-deceleration or acceleration from the nominal energy of 63 keV by a high tension DC bias applied to accelerating electrodes. A description of the system is given, followed by reports on the first operating experience with the ASACUSA experiment, dedicated performance measurements and consolidation progress
Diffusion in supersonic, turbulent, compressible flows
We investigate diffusion in supersonic, turbulent, compressible flows.
Supersonic turbulence can be characterized as network of interacting shocks. We
consider flows with different rms Mach numbers and where energy necessary to
maintain dynamical equilibrium is inserted at different spatial scales. We find
that turbulent transport exhibits super-diffusive behavior due to induced bulk
motions. In a comoving reference frame, however, diffusion behaves normal and
can be described by mixing length theory extended into the supersonic regime.Comment: 11 pages, incl. 5 figures, accepted for publication in Physical
Review E (a high-resolution version is available at
http://www.aip.de./~ralf/Publications/p21.abstract.html
The Planetary Nebula Luminosity Function at the Dawn of Gaia
The [O III] 5007 Planetary Nebula Luminosity Function (PNLF) is an excellent
extragalactic standard candle. In theory, the PNLF method should not work at
all, since the luminosities of the brightest planetary nebulae (PNe) should be
highly sensitive to the age of their host stellar population. Yet the method
appears robust, as it consistently produces < 10% distances to galaxies of all
Hubble types, from the earliest ellipticals to the latest-type spirals and
irregulars. It is therefore uniquely suited for cross-checking the results of
other techniques and finding small offsets between the Population I and
Population II distance ladders. We review the calibration of the method and
show that the zero points provided by Cepheids and the Tip of the Red Giant
Branch are in excellent agreement. We then compare the results of the PNLF with
those from Surface Brightness Fluctuation measurements, and show that, although
both techniques agree in a relative sense, the latter method yields distances
that are ~15% larger than those from the PNLF. We trace this discrepancy back
to the calibration galaxies and argue that, due to a small systematic error
associated with internal reddening, the true distance scale likely falls
between the extremes of the two methods. We also demonstrate how PNLF
measurements in the early-type galaxies that have hosted Type Ia supernovae can
help calibrate the SN Ia maximum magnitude-rate of decline relation. Finally,
we discuss how the results from space missions such as Kepler and Gaia can help
our understanding of the PNLF phenomenon and improve our knowledge of the
physics of local planetary nebulae.Comment: 12 pages, invited review at the conference "The Fundamental Cosmic
Distance Scale: State of the Art and Gaia Perspective", to appear in
Astrophysics and Space Scienc
Annihilation vs. Decay: Constraining dark matter properties from a gamma-ray detection
Most proposed dark matter candidates are stable and are produced thermally in
the early Universe. However, there is also the possibility of unstable (but
long-lived) dark matter, produced thermally or otherwise. We propose a strategy
to distinguish between dark matter annihilation and/or decay in the case that a
clear signal is detected in gamma-ray observations of Milky Way dwarf
spheroidal galaxies with gamma-ray experiments. The sole measurement of the
energy spectrum of an indirect signal would render the discrimination between
these cases impossible. We show that by examining the dependence of the
intensity and energy spectrum on the angular distribution of the emission, the
origin could be identified as decay, annihilation, or both. In addition, once
the type of signal is established, we show how these measurements could help to
extract information about the dark matter properties, including mass,
annihilation cross section, lifetime, dominant annihilation and decay channels,
and the presence of substructure. Although an application of the approach
presented here would likely be feasible with current experiments only for very
optimistic dark matter scenarios, the improved sensitivity of upcoming
experiments could enable this technique to be used to study a wider range of
dark matter models.Comment: 29 pp, 8 figs; replaced to match published version (minor changes and
some new references
Quantum error rejection code with spontaneous parametric conversion
We propose a linear optics scheme with SPDC process to test the fault
tolerance property of quantum error correction code. To transmit an unknown
qubit robustly through the noisy channel, one may first encode it into a
certain quantum error correction code and then transmit it. The remote party
decodes it and stores it. Sending a qubit in such a way can significantly
reduces the error rate compared with directly sending the qubit itself. Here we
show how to realize such a scheme by linear optics.Comment: To appear in Phys. Rev. A. 18 pages, 2 figure, minor erros corrected
and more explanations added to increase the readabilit
On the Testing of Seismicity Models
Recently a likelihood-based methodology has been developed by the
Collaboratory for the Study of Earthquake Predictability (CSEP) with a view to
testing and ranking seismicity models. We analyze this approach from the
standpoint of possible applications to hazard analysis. We arrive at the
conclusion that model testing can be made more efficient by focusing on some
integral characteristics of the seismicity distribution. This is achieved
either in the likelihood framework but with economical and physically
reasonable coarsening of the phase space or by choosing a suitable measure of
closeness between empirical and model seismicity rate in this space.Comment: To appear at Acta Geophysic
Pulse-Shape discrimination with the Counting Test Facility
Pulse shape discrimination (PSD) is one of the most distinctive features of
liquid scintillators. Since the introduction of the scintillation techniques in
the field of particle detection, many studies have been carried out to
characterize intrinsic properties of the most common liquid scintillator
mixtures in this respect. Several application methods and algorithms able to
achieve optimum discrimination performances have been developed. However, the
vast majority of these studies have been performed on samples of small
dimensions. The Counting Test Facility, prototype of the solar neutrino
experiment Borexino, as a 4 ton spherical scintillation detector immersed in
1000 tons of shielding water, represents a unique opportunity to extend the
small-sample PSD studies to a large-volume setup. Specifically, in this work we
consider two different liquid scintillation mixtures employed in CTF,
illustrating for both the PSD characterization results obtained either with the
processing of the scintillation waveform through the optimum Gatti's method, or
via a more conventional approach based on the charge content of the
scintillation tail. The outcomes of this study, while interesting per se, are
also of paramount importance in view of the expected Borexino detector
performances, where PSD will be an essential tool in the framework of the
background rejection strategy needed to achieve the required sensitivity to the
solar neutrino signals.Comment: 39 pages, 17 figures, submitted to Nucl. Instr. Meth.
New data on OZI rule violation in bar{p}p annihilation at rest
The results of a measurement of the ratio R = Y(phi pi+ pi-) / Y(omega pi+
pi-) for antiproton annihilation at rest in a gaseous and in a liquid hydrogen
target are presented. It was found that the value of this ratio increases with
the decreasing of the dipion mass, which demonstrates the difference in the phi
and omega production mechanisms. An indication on the momentum transfer
dependence of the apparent OZI rule violation for phi production from the 3S1
initial state was found.Comment: 11 pages, 3 PostScript figures, submitted to Physics Letter
- …