88 research outputs found

    The Influence of Signaling Conspecific and Heterospecific Neighbors on Eavesdropper Pressure

    Get PDF
    The study of tradeoffs between the attraction of mates and the attraction of eavesdropping predators and parasites has generally focused on a single species of prey, signaling in isolation. In nature, however, animals often signal from mixed-species aggregations, where interactions with heterospecific group members may be an important mechanism modulating tradeoffs between sexual and natural selection, and thus driving signal evolution. Although studies have shown that conspecific signalers can influence eavesdropper pressure on mating signals, the effects of signaling heterospecifics on eavesdropper pressure, and on the balance between natural and sexual selection, are likely to be different. Here, we review the role of neighboring signalers in mediating changes in eavesdropper pressure, and present a simple model that explores how selection imposed by eavesdropping enemies varies as a function of a signaling aggregation\u27s species composition, the attractiveness of aggregation members to eavesdroppers, and the eavesdroppers\u27 preferences for different member types. This approach can be used to model mixed-species signaling aggregations, as well as same-species aggregations, including those with non-signaling individuals, such as satellites or females. We discuss the implications of our model for the evolution of signal structure, signaling behavior, mixed-species aggregations, and community dynamics

    The influence of signaling conspecific and heterospecific neighbors on eavesdropper pressure

    Get PDF
    Sherpa Romeo green journal. Open access article. Creative Commons Attribution License (CC BY) applies.The study of tradeoffs between the attraction of mates and the attraction of eavesdropping predators and parasites has generally focused on a single species of prey, signaling in isolation. In nature, however, animals often signal from mixed-species aggregations, where interactions with heterospecific group members may be an important mechanism modulating tradeoffs between sexual and natural selection, and thus driving signal evolution. Although studies have shown that conspecific signalers can influence eavesdropper pressure on mating signals, the effects of signaling heterospecifics on eavesdropper pressure, and on the balance between natural and sexual selection, are likely to be different. Here, we review the role of neighboring signalers in mediating changes in eavesdropper pressure, and present a simple model that explores how selection imposed by eavesdropping enemies varies as a function of a signaling aggregation’s species composition, the attractiveness of aggregation members to eavesdroppers, and the eavesdroppers’ preferences for different member types. This approach can be used to model mixed-species signaling aggregations, as well as same-species aggregations, including those with non-signaling individuals, such as satellites or females. We discuss the implications of our model for the evolution of signal structure, signaling behavior, mixed-species aggregations, and community dynamics.Ye

    Isolation of Oropouche Virus from Febrile Patient, Ecuador.

    Get PDF
    We report identification of an Oropouche virus strain in a febrile patient from Ecuador by using metagenomic sequencing and real-time reverse transcription PCR. Virus was isolated from patient serum by using Vero cells. Phylogenetic analysis of the whole-genome sequence showed the virus to be similar to a strain from Peru

    Analysis of the History and Spread of HIV-1 in Uganda using phylodynamics

    Get PDF
    HIV prevalence has decreased in Uganda since the 1990s, but remains substantial within high-risk groups. Here, we reconstruct the history and spread of HIV subtypes A1 and D in Uganda and explore the transmission dynamics in high-risk populations. We analysed HIV pol sequences from female sex workers in Kampala (n = 42), Lake Victoria fisher-folk (n = 46) and a rural clinical cohort (n = 74), together with publicly available sequences from adjacent regions in Uganda (n = 412) and newly generated sequences from samples taken in Kampala in 1986 (n = 12). Of the sequences from the three Ugandan populations, 60 (37.1 %) were classified as subtype D, 54 (33.3 %) as subtype A1, 31 (19.1 %) as A1/D recombinants, six (3.7 %) as subtype C, one (0.6 %) as subtype G and 10 (6.2 %) as other recombinants. Among the A1/D recombinants we identified a new candidate circulating recombinant form. Phylodynamic and phylogeographic analyses using BEAST indicated that the Ugandan epidemics originated in 1960 (1950-1968) for subtype A1 and 1973 (1970-1977) for D, in rural south-western Uganda with subsequent spread to Kampala. They also showed extensive interconnection with adjacent countries. The sequence analysis shows both epidemics grew exponentially during the 1970s-1980s and decreased from 1992, which agrees with HIV prevalence reports in Uganda. Inclusion of sequences from the 1980s indicated the origin of both epidemics was more recent than expected and substantially narrowed the confidence intervals in comparison to previous estimates. We identified three transmission clusters and ten pairs, none of them including patients from different populations, suggesting active transmission within a structured transmission network

    Type 2 diabetes and risk of hospital admission or death for chronic liver diseases

    Get PDF
    Background & aims: the impact of type 2 diabetes (T2DM) on hospital admissions and deaths due to common chronic liver diseases (CLDs) is uncertain. Our aim was to investigate associations between T2DM and CLDs in a national retrospective cohort study and to investigate the role of sex and socio-economic status (SES).Methods: we used International Classification of Disease codes to identify incident alcoholic liver disease (ALD), autoimmune liver disease, haemochromatosis, hepatocellular carcinoma, non-alcoholic fatty liver disease (NAFLD) and viral liver disease from linked diabetes, hospital, cancer and death records for people of 40–89 years of age in Scotland 2004–2013. We used quasi Poisson regression to estimate rate ratios (RR).Results: there were 6667 and 33624 first mentions of CLD in hospital, cancer and death records over ?1.8 and 24 million person-years in people with and without T2DM, respectively. The most common liver disease was ALD among people without diabetes and was NAFLD among people with T2DM. Age-adjusted RR for T2DM compared to the non-diabetic population (95% confidence intervals) varied between 1.27 (1.04–1.55) for autoimmune liver disease and 5.36 (4.41–6.51) for NAFLD. RRs were lower for men than women and for more compared to less deprived populations for both ALD and NAFLD.Conclusions: T2DM is associated with increased risk of hospital admission or death for all common CLDs and the strength of the association varies by type of CLD, sex and SES. Increasing prevalence of T2DM is likely to result in increasing burden of all CLD

    Remodeling of the Cortical Structural Connectome in Posttraumatic Stress Disorder:Results from the ENIGMA-PGC PTSD Consortium

    Get PDF
    BACKGROUND: Posttraumatic stress disorder (PTSD) is accompanied by disrupted cortical neuroanatomy. We investigated alteration in covariance of structural networks associated with PTSD in regions that demonstrate the case-control differences in cortical thickness (CT) and surface area (SA). METHODS: Neuroimaging and clinical data were aggregated from 29 research sites in >1,300 PTSD cases and >2,000 trauma-exposed controls (age 6.2-85.2 years) by the ENIGMA-PGC PTSD working group. Cortical regions in the network were rank-ordered by effect size of PTSD-related cortical differences in CT and SA. The top-n (n = 2 to 148) regions with the largest effect size for PTSD > non-PTSD formed hypertrophic networks, the largest effect size for PTSD < non-PTSD formed atrophic networks, and the smallest effect size of between-group differences formed stable networks. The mean structural covariance (SC) of a given n-region network was the average of all positive pairwise correlations and was compared to the mean SC of 5,000 randomly generated n-region networks. RESULTS: Patients with PTSD, relative to non-PTSD controls, exhibited lower mean SC in CT-based and SA-based atrophic networks. Comorbid depression, sex and age modulated covariance differences of PTSD-related structural networks. CONCLUSIONS: Covariance of structural networks based on CT and cortical SA are affected by PTSD and further modulated by comorbid depression, sex, and age. The structural covariance networks that are perturbed in PTSD comport with converging evidence from resting state functional connectivity networks and networks impacted by inflammatory processes, and stress hormones in PTSD

    A Comparison of Methods to Harmonize Cortical Thickness Measurements Across Scanners and Sites

    Get PDF
    Results of neuroimaging datasets aggregated from multiple sites may be biased by site-specific profiles in participants’ demographic and clinical characteristics, as well as MRI acquisition protocols and scanning platforms. We compared the impact of four different harmonization methods on results obtained from analyses of cortical thickness data: (1) linear mixed-effects model (LME) that models site-specific random intercepts (LME INT), (2) LME that models both site-specific random intercepts and age-related random slopes (LME INT+SLP), (3) ComBat, and (4) ComBat with a generalized additive model (ComBat-GAM). Our test case for comparing harmonization methods was cortical thickness data aggregated from 29 sites, which included 1,340 cases with posttraumatic stress disorder (PTSD) (6.2–81.8 years old) and 2,057 trauma-exposed controls without PTSD (6.3–85.2 years old). We found that, compared to the other data harmonization methods, data processed with ComBat-GAM was more sensitive to the detection of significant case-control differences (Χ 2(3) = 63.704, p < 0.001) as well as case-control differences in age-related cortical thinning (Χ 2(3) = 12.082, p = 0.007). Both ComBat and ComBat-GAM outperformed LME methods in detecting sex differences (Χ 2(3) = 9.114, p = 0.028) in regional cortical thickness. ComBat-GAM also led to stronger estimates of age-related declines in cortical thickness (corrected p-values < 0.001), stronger estimates of case-related cortical thickness reduction (corrected p-values < 0.001), weaker estimates of age-related declines in cortical thickness in cases than controls (corrected p-values < 0.001), stronger estimates of cortical thickness reduction in females than males (corrected p-values < 0.001), and stronger estimates of cortical thickness reduction in females relative to males in cases than controls (corrected p-values < 0.001). Our results support the use of ComBat-GAM to minimize confounds and increase statistical power when harmonizing data with non-linear effects, and the use of either ComBat or ComBat-GAM for harmonizing data with linear effects

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers

    Get PDF
    We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20h10m54.71s+33°33′25.29′′, and the other (B) is 7.45° in diameter and centered on 8h35m20.61s-46°49′25.151′′. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5×10-9 Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3×10-25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10-24 for all polarizations and sky locations. © 2016 American Physical Society
    corecore