96 research outputs found

    Systems biological and mechanistic modelling of radiation-induced cancer

    Get PDF
    This paper summarises the five presentations at the First International Workshop on Systems Radiation Biology that were concerned with mechanistic models for carcinogenesis. The mathematical description of various hypotheses about the carcinogenic process, and its comparison with available data is an example of systems biology. It promises better understanding of effects at the whole body level based on properties of cells and signalling mechanisms between them. Of these five presentations, three dealt with multistage carcinogenesis within the framework of stochastic multistage clonal expansion models, another presented a deterministic multistage model incorporating chromosomal aberrations and neoplastic transformation, and the last presented a model of DNA double-strand break repair pathways for second breast cancers following radiation therapy

    Role of supplemental foods and habitat structural complexity in persistence and coexistence of generalist predatory mites

    Get PDF
    Variation in the strength of intraguild predation (IGP) may be related to habitat structural complexity and to additional resources outside the narrow predator-prey relationship. We studied the food web interactions on grape, which involves two generalist predatory mites. We evaluated the effects of grape powdery mildew (GPM) as supplemental food, and habitat structural complexity provided by domatia. Our findings suggest that structural and nutritional diversity/complexity promote predatory mite abundance and can help to maintain the beneficial mites - plants association. The effect of these factors on coexistence between predators is influenced by the supplemental food quality and relative differences in body size of interacting species

    Incidence of Influenza in Healthy Adults and Healthcare Workers: A Systematic Review and Meta-Analysis

    Get PDF
    BACKGROUND: Working in healthcare is often considered a risk factor for influenza; however, this risk has not been quantified. We aimed to systematically review evidence describing the annual incidence of influenza among healthy adults and healthcare workers (HCWs). METHODS AND FINDINGS: We searched OVID MEDLINE (1950 to 2010), EMBASE (1947 to 2010) and reference lists of identified articles. Observational studies or randomized trials reporting full season or annual influenza infection rates for healthy, working age adult subjects and HCWs were included. Influenza infection was defined as a four-fold rise in antibody titer, or positive viral culture or polymerase chain reaction. From 24,707 citations, 29 studies covering 97 influenza seasons with 58,245 study participants were included. Pooled influenza incidence rates (IR) (95% confidence intervals (CI)) per 100 HCWs per season and corresponding incidence rate ratios (IRR) (95% CI) as compared to healthy adults were as follows. All infections: IR 18.7 (95% CI, 15.8 to 22.1), IRR 3.4 (95% CI, 1.2 to 5.7) in unvaccinated HCWs; IR 6.5 (95% CI, 4.6 to 9.1), IRR 5.4 (95% CI, 2.8 to 8.0) in vaccinated HCWs. Symptomatic infections: IR 7.5 (95% CI, 4.9 to 11.7), IRR 1.5 (95% CI, 0.4 to 2.5) in unvaccinated HCWs, IR 4.8 (95% CI, 3.2 to 7.2), IRR 1.6 (95% CI, 0.5 to 2.7) in vaccinated HCWs. CONCLUSIONS: Compared to adults working in non-healthcare settings, HCWs are at significantly higher risk of influenza

    The PLATO 2.0 mission

    Get PDF
    PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4-16 mag). It focusses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science

    The Cost Incidence of the UK's NHS System.

    No full text
    We examine the cost incidence of the United Kingdom's National Health Service (NHS) through application of the concepts of fiscal imbalance (FI) and generational imbalance (GI). We find significant disparities of costs by gender, region and type of NHS expenditure. The financial sustainability of publicly funded health care systems is sensitive to the demographics of ageing population. Historical and current trends in the demographic structure of U.K.'s population also impact these structural imbalances underlying the system. The pay-as-you-go (PAYG) financed funding status of NHS based on both currently required cash-based accounting principles and proposed accrual-based accounting principles is criticised for not recognising the continuing service obligations of the U.K. Government under the NHS. A combination of FI and GI largely explains the under-funding of the NHS. Data are taken from both historical trends in expenditure and ageing as well as projected demographics. The analysis implies that there is a significant inter-generational inequity in the funding of the NHS
    • 

    corecore