12 research outputs found

    Monilochaetes and allied genera of the Glomerellales, and a reconsideration of families in the Microascales

    Get PDF
    We examined the phylogenetic relationships of two species that mimic Chaetosphaeria in teleomorph and anamorph morphologies, Chaetosphaeria tulasneorum with a Cylindrotrichum anamorph and Australiasca queenslandica with a Dischloridium anamorph. Four data sets were analysed: a) the internal transcribed spacer region including ITS1, 5.8S rDNA and ITS2 (ITS), b) nc28S (ncLSU) rDNA, c) nc18S (ncSSU) rDNA, and d) a combined data set of ncLSU-ncSSU-RPB2 (ribosomal polymerase B2). The traditional placement of Ch. tulasneorum in the Microascales based on ncLSU sequences is unsupported and Australiasca does not belong to the Chaetosphaeriaceae. Both holomorph species are nested within the Glomerellales. A new genus, Reticulascus, is introduced for Ch. tulasneorum with associated Cylindrotrichum anamorph; another species of Reticulascus and its anamorph in Cylindrotrichum are described as new. The taxonomic structure of the Glomerellales is clarified and the name is validly published. As delimited here, it includes three families, the Glomerellaceae and the newly described Australiascaceae and Reticulascaceae. Based on ITS and ncLSU rDNA sequence analyses, we confirm the synonymy of the anamorph genera Dischloridium with Monilochaetes. Consequently Dischloridium laeënse, type species of the genus, and three related species are transferred to the older genus Monilochaetes. The teleomorph of D. laeënse is described in Australiasca as a new species. The Plectosphaerellaceae, to which the anamorph genus Stachylidium is added, is basal to the Glomerellales in the three-gene phylogeny. Stilbella annulata also belongs to this family and is newly combined in Acrostalagmus. Phylogenetic analyses based on ncLSU, ncSSU, and combined ncLSU-ncSSU-RPB2 sequences clarify family relationships within the Microascales. The family Ceratocystidaceae is validated as a strongly supported monophyletic group consisting of Ceratocystis, Cornuvesica, Thielaviopsis, and the type species of Ambrosiella. The new family Gondwanamycetaceae, a strongly supported sister clade to the Ceratocystidaceae, is introduced for the teleomorph genus Gondwanamyces and its Custingophora anamorphs. Four families are accepted in the Microascales, namely the Ceratocystidaceae, Gondwanamycetaceae, Halosphaeriaceae, and Microascaceae. Because of a suggested affinity of a Faurelina indica isolate to the Microascales, the phylogenetic position of the Chadefaudiellaceae is reevaluated. Based on the results from a separate ncLSU analysis of the Dothideomycetes, Faurelina is excluded from the Microascales and placed in the Pleosporales

    New taxa in Aspergillus section Usti

    Get PDF
    Based on phylogenetic analysis of sequence data, Aspergillus section Usti includes 21 species, inclucing two teleomorphic species Aspergillus heterothallicus (= Emericella heterothallica) and Fennellia monodii. Aspergillus germanicus sp. nov. was isolated from indoor air in Germany. This species has identical ITS sequences with A. insuetus CBS 119.27, but is clearly distinct from that species based on ÎČ-tubulin and calmodulin sequence data. This species is unable to grow at 37 °C, similarly to A. keveii and A. insuetus. Aspergillus carlsbadensis sp. nov. was isolated from the Carlsbad Caverns National Park in New Mexico. This taxon is related to, but distinct from a clade including A. calidoustus, A. pseudodeflectus, A. insuetus and A. keveii on all trees. This species is also unable to grow at 37 °C, and acid production was not observed on CREA. Aspergillus californicus sp. nov. is proposed for an isolate from chamise chaparral (Adenostoma fasciculatum) in California. It is related to a clade including A. subsessilis and A. kassunensis on all trees. This species grew well at 37 °C, and acid production was not observed on CREA. The strain CBS 504.65 from soil in Turkey showed to be clearly distinct from the A. deflectus ex-type strain, indicating that this isolate represents a distinct species in this section. We propose the name A. turkensis sp. nov. for this taxon. This species grew, although rather restrictedly at 37 °C, and acid production was not observed on CREA. Isolates from stored maize, South Africa, as a culture contaminant of Bipolaris sorokiniana from indoor air in Finland proved to be related to, but different from A. ustus and A. puniceus. The taxon is proposed as the new species A. pseudoustus. Although supported only by low bootstrap values, F. monodii was found to belong to section Usti based on phylogenetic analysis of either loci BLAST searches to the GenBank database also resulted in closest hits from section Usti. This species obviously does not belong to the Fennellia genus, instead it is a member of the Emericella genus. However, in accordance with the guidelines of the Amsterdam Declaration on fungal nomenclature (Hawksworth et al. 2011), and based on phylogenetic and physiological evidence, we propose the new combination Aspergillus monodii comb. nov. for this taxon. Species assigned to section Usti can be assigned to three chemical groups based on the extrolites. Aspergillus ustus, A. granulosus and A. puniceus produced ustic acid, while A. ustus and A. puniceus also produced austocystins and versicolorins. In the second chemical group, A. pseudodeflectus produced drimans in common with the other species in this group, and also several unique unknown compounds. Aspergillus calidoustus isolates produced drimans and ophiobolins in common with A. insuetus and A. keveii, but also produced austins. Aspergillus insuetus isolates also produced pergillin while A. keveii isolates produced nidulol. In the third chemical group, E. heterothallica has been reported to produce emethallicins, 5'-hydroxyaveranthin, emeheterone, emesterones, 5'-hydroxyaveranthin

    1) Etude de la mycoflore coprophile des zones arides et semi-arides du nord de l'Afrique : 2) Etude de l'amyloeidicite des "huelle cells" chez les Emericella (Ascomycetes)

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    A new species of Lasiobolidium from Californian soil

    No full text
    corecore