118 research outputs found

    HIV-1 Matrix Dependent Membrane Targeting Is Regulated by Gag mRNA Trafficking

    Get PDF
    Retroviral Gag polyproteins are necessary and sufficient for virus budding. Productive HIV-1 Gag assembly takes place at the plasma membrane. However, little is known about the mechanisms by which thousands of Gag molecules are targeted to the plasma membrane. Using a bimolecular fluorescence complementation (BiFC) assay, we recently reported that the cellular sites and efficiency of HIV-1 Gag assembly depend on the precise pathway of Gag mRNA export from the nucleus, known to be mediated by Rev. Here we describe an assembly deficiency in human cells for HIV Gag whose expression depends on hepatitis B virus (HBV) post-transcriptional regulatory element (PRE) mediated-mRNA nuclear export. PRE-dependent HIV Gag expressed well in human cells, but assembled with slower kinetics, accumulated intracellularly, and failed to associate with a lipid raft compartment where the wild-type Rev-dependent HIV-1 Gag efficiently assembles. Surprisingly, assembly and budding of PRE-dependent HIV Gag in human cells could be rescued in trans by co-expression of Rev-dependent Gag that provides correct membrane targeting signals, or in cis by replacing HIV matrix (MA) with other membrane targeting domains. Taken together, our results demonstrate deficient membrane targeting of PRE-dependent HIV-1 Gag and suggest that HIV MA function is regulated by the trafficking pathway of the encoding mRNA

    Peptide Ligands Incorporated into the Threefold Spike Capsid Domain to Re-Direct Gene Transduction of AAV8 and AAV9 In Vivo

    Get PDF
    Efficiency and specificity of viral vectors are vital issues in gene therapy. Insertion of peptide ligands into the adeno-associated viral (AAV) capsid at receptor binding sites can re-target AAV2-derived vectors to alternative cell types. Also, the use of serotypes AAV8 and -9 is more efficient than AAV2 for gene transfer to certain tissues in vivo. Consequently, re-targeting of these serotypes by ligand insertion could be a promising approach but has not been explored so far. Here, we generated AAV8 and -9 vectors displaying peptides in the threefold spike capsid domain. These peptides had been selected from peptide libraries displayed on capsids of AAV serotype 2 to optimize systemic gene delivery to murine lung tissue and to breast cancer tissue in PymT transgenic mice (PymT). Such peptide insertions at position 590 of the AAV8 capsid and position 589 of the AAV9 capsid changed the transduction properties of both serotypes. However, both peptides inserted in AAV8 did not result in the same changes of tissue tropism as they did in AAV2. While the AAV2 peptides selected on murine lung tissue did not alter tropism of serotypes 8 and -9, insertion of the AAV2-derived peptide selected on breast cancer tissue augmented tumor gene delivery in both serotypes. Further, this peptide mediated a strong but unspecific in vivo gene transfer for AAV8 and abrogated transduction of various control tissues for AAV9. Our findings indicate that peptide insertion into defined sites of AAV8 and -9 capsids can change and improve their efficiency and specificity compared to their wild type variants and to AAV2, making these insertion sites attractive for the generation of novel targeted vectors in these serotypes

    Computerised interpretation of fetal heart rate during labour (INFANT): a randomised controlled trial

    Get PDF
    Background. Continuous electronic fetal heart-rate monitoring is widely used during labour, and computerised interpretation could increase its usefulness. We aimed to establish whether the addition of decision-support software to assist in the interpretation of cardiotocographs affected the number of poor neonatal outcomes. Methods. In this unmasked randomised controlled trial, we recruited women in labour aged 16 years or older having continuous electronic fetal monitoring, with a singleton or twin pregnancy, and at 35 weeks’ gestation or more at 24 maternity units in the UK and Ireland. They were randomly assigned (1:1) to decision support with the INFANT system or no decision support via a computer-generated stratified block randomisation schedule. The primary outcomes were poor neonatal outcome (intrapartum stillbirth or early neonatal death excluding lethal congenital anomalies, or neonatal encephalopathy, admission to the neonatal unit within 24 h for ≥48 h with evidence of feeding difficulties, respiratory illness, or encephalopathy with evidence of compromise at birth), and developmental assessment at age 2 years in a subset of surviving children. Analyses were done by intention to treat. This trial is completed and is registered with the ISRCTN Registry, number 98680152. Findings. Between Jan 6, 2010, and Aug 31, 2013, 47062 women were randomly assigned (23515 in the decision-support group and 23547 in the no-decision-support group) and 46042 were analysed (22987 in the decision-support group and 23055 in the no-decision-support group). We noted no difference in the incidence of poor neonatal outcome between the groups—172 (0·7%) babies in the decision-support group compared with 171 (0·7%) babies in the no-decision-support group (adjusted risk ratio 1·01, 95% CI 0·82–1·25). At 2 years, no significant differences were noted in terms of developmental assessment. Interpretation. Use of computerised interpretation of cardiotocographs in women who have continuous electronic fetal monitoring in labour does not improve clinical outcomes for mothers or babies

    Retroviral matrix and lipids, the intimate interaction

    Get PDF
    Retroviruses are enveloped viruses that assemble on the inner leaflet of cellular membranes. Improving biophysical techniques has recently unveiled many molecular aspects of the interaction between the retroviral structural protein Gag and the cellular membrane lipids. This interaction is driven by the N-terminal matrix domain of the protein, which probably undergoes important structural modifications during this process, and could induce membrane lipid distribution changes as well. This review aims at describing the molecular events occurring during MA-membrane interaction, and pointing out their consequences in terms of viral assembly. The striking conservation of the matrix membrane binding mode among retroviruses indicates that this particular step is most probably a relevant target for antiviral research

    Designer Gene Delivery Vectors: Molecular Engineering and Evolution of Adeno-Associated Viral Vectors for Enhanced Gene Transfer

    Get PDF
    Gene delivery vectors based on adeno-associated virus (AAV) are highly promising due to several desirable features of this parent virus, including a lack of pathogenicity, efficient infection of dividing and non-dividing cells, and sustained maintenance of the viral genome. However, several problems should be addressed to enhance the utility of AAV vectors, particularly those based on AAV2, the best characterized AAV serotype. First, altering viral tropism would be advantageous for broadening its utility in various tissue or cell types. In response to this need, vector pseudotyping, mosaic capsids, and targeting ligand insertion into the capsid have shown promise for altering AAV specificity. In addition, library selection and directed evolution have recently emerged as promising approaches to modulate AAV tropism despite limited knowledge of viral structure–function relationships. Second, pre-existing immunity to AAV must be addressed for successful clinical application of AAV vectors. “Shielding” polymers, site-directed mutagenesis, and alternative AAV serotypes have shown success in avoiding immune neutralization. Furthermore, directed evolution of the AAV capsid is a high throughput approach that has yielded vectors with substantial resistance to neutralizing antibodies. Molecular engineering and directed evolution of AAV vectors therefore offer promise for generating ‘designer’ gene delivery vectors with enhanced properties

    Insulin-like growth factor binding protein 5 enhances survival of LX2 human hepatic stellate cells

    Get PDF
    ABSTRACT: BACKGROUND: Expression of insulin-like growth factor binding protein 5 (IGFBP5) is strongly induced upon activation of hepatic stellate cells and their transdifferentiation into myofibroblasts in vitro. This was confirmed in vivo in an animal model of liver fibrosis. Since IGFBP5 has been shown to promote fibrosis in other tissues, the aim of this study was to investigate its role in the progression of liver fibrosis. METHODS: The effect of IGFBP5 was studied in LX2 cells, a model for partially activated hepatic stellate cells, and in human primary liver myofibroblasts. IGFBP5 signalling was modulated by the addition of recombinant protein, by lentiviral overexpression, and by siRNA mediated silencing. Furthermore, the addition of IGF1 and silencing of the IGF1R was used to investigate the role of the IGF-axis in IGFBP5 mediated effects. RESULTS: IGFBP5 enhanced the survival of LX2 cells and myofibroblasts via a >50% suppression of apoptosis. This effect of IGFBP5 was not modulated by the addition of IGF1, nor by silencing of the IGF1R. Additionally, IGFBP5 was able to enhance the expression of established pro-fibrotic markers, such as collagen Ialpha1, TIMP1 and MMP1. CONCLUSION: IGFBP5 enhances the survival of (partially) activated hepatic stellate cells and myofibroblasts by lowering apoptosis via an IGF1-independent mechanism, and enhances the expression of profibrotic genes. Its lowered expression may, therefore, reduce the progression of liver fibrosi

    Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

    Full text link
    corecore