1,221 research outputs found

    FUSE Observations of the Dwarf Nova SW UMa During Quiescence

    Full text link
    We present spectroscopic observations of the short-period cataclysmic variable SW Ursa Majoris, obtained by the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite while the system was in quiescence. The data include the resonance lines of O VI at 1031.91 and 1037.61 A. These lines are present in emission, and they exhibit both narrow (~ 150 km/s) and broad (~ 2000 km/s) components. The narrow O VI emission lines exhibit unusual double-peaked and redshifted profiles. We attribute the source of this emission to a cooling flow onto the surface of the white dwarf primary. The broad O VI emission most likely originates in a thin, photoionized surface layer on the accretion disk. We searched for emission from H_2 at 1050 and 1100 A, motivated by the expectation that the bulk of the quiescent accretion disk is in the form of cool, molecular gas. If H_2 is present, then our limits on the fluxes of the H_2 lines are consistent with the presence of a surface layer of atomic H that shields the interior of the disk. These results may indicate that accretion operates primarily in the surface layers of the disk in SW UMa. We also investigate the far-UV continuum of SW UMa and place an upper limit of 15,000 K on the effective temperature of the white dwarf.Comment: 21 Pages, 3 figures, to be published in Ap

    Imaging the dynamical atmosphere of the red supergiant Betelgeuse in the CO first overtone lines with VLTI/AMBER

    Full text link
    We present the first 1-D aperture synthesis imaging of the red supergiant Betelgeuse in the individual CO first overtone lines with VLTI/AMBER. The reconstructed 1-D projection images reveal that the star appears differently in the blue wing, line center, and red wing of the individual CO lines. The 1-D projection images in the blue wing and line center show a pronounced, asymmetrically extended component up to ~1.3 stellar radii, while those in the red wing do not show such a component. The observed 1-D projection images in the lines can be reasonably explained by a model in which the CO gas within a region more than half as large as the stellar size is moving slightly outward with 0--5 km s^-1, while the gas in the remaining region is infalling fast with 20--30 km s^-1. A comparison between the CO line AMBER data taken in 2008 and 2009 shows a significant time variation in the dynamics of the CO line-forming region in the photosphere and the outer atmosphere. In contrast to the line data, the reconstructed 1-D projection images in the continuum show only a slight deviation from a uniform disk or limb-darkened disk. We derive a uniform-disk diameter of 42.05 +/- 0.05 mas and a power-law-type limb-darkened disk diameter of 42.49 +/- 0.06 mas and a limb-darkening parameter of (9.7 +/- 0.5) x 10^{-2}. This latter angular diameter leads to an effective temperature of 3690 +/- 54 K for the continuum-forming layer. These diameters confirm that the near-IR size of Betelgeuse was nearly constant over the last 18 years, in marked contrast to the recently reported noticeable decrease in the mid-IR size. The continuum data taken in 2008 and 2009 reveal no or only marginal time variations, much smaller than the maximum variation predicted by the current 3-D convection simulations.Comment: 21 pages, 12 figures, accepted for publication in Astronomy and Astrophysic

    On the CO Near-IR Band and the Line Splitting Phenomenon in the Yellow Hypergiant Rho Cassiopeiae

    Get PDF
    We report on multi-epoch optical and near-infrared spectroscopy around the first overtone ro-vibrational band of CO in the pulsating yellow hypergiant Rho Cas, one of the most massive stars in the Galaxy and a candidate SN II progenitor. We argue that the double cores of the CO absorption lines, that have previously been attributed to separate circumstellar shells expelled during its recurrent outbursts, result in fact from a superposition of a wide absorption line and a narrow central emission line. The CO line doubling returns over subsequent pulsation cycles, where the superposed line emission assumes its largest intensity near phases of maximum light. We find that the morphology and behavior of the CO band closely resemble the remarkable "line-splitting phenomenon" also observed in optical low-excitation atomic lines. Based on radiative transport calculations we present a simplified model of the near-IR CO emission emerging from cooler atmospheric layers in the immediate vicinity of the photosphere. We speculate that the kinetic temperature minimum in our model results from a periodical pulsation-driven shock wave. We further discuss a number of alternative explanations for the origin of the ubiquitous emission line spectrum, possibly due to a quasi-chromosphere or a steady shock wave at the interface of a fast expanding wind and the ISM. We present a number of interesting spectroscopic similarities between Rho Cas and other types of cool variable supergiants such as the RV Tau and R CrB stars. We further propose a possibly common mechanism for the enigmatic outburst behavior of these luminous pulsating cool stars.Comment: accepted to ApJ; 3 color fig

    A Far-Ultraviolet Spectroscopic Survey of Luminous Cool Stars

    Full text link
    FUSE ultraviolet spectra of 8 giant and supergiant stars reveal that high temperature (3 X 10^5 K) atmospheres are common in luminous cool stars and extend across the color-magnitude diagram from Alpha Car (F0 II) to the cool giant Alpha Tau (K5 III). Emission present in these spectra includes chromospheric H-Lyman Beta, Fe II, C I, and transition region lines of C III, O VI, Si III, Si IV. Emission lines of Fe XVIII and Fe XIX signaling temperatures of ~10^7 K and coronal material are found in the most active stars, Beta Cet and 31 Com. A short-term flux variation, perhaps a flare, was detected in Beta Cet during our observation. Stellar surface fluxes of the emission of C III and O VI are correlated and decrease rapidly towards the cooler stars, reminiscent of the decay of magnetically-heated atmospheres. Profiles of the C III (977A) lines suggest that mass outflow is underway at T~80,000 K, and the winds are warm. Indications of outflow at higher temperatures (3 X 10^5K) are revealed by O VI asymmetries and the line widths themselves. High temperature species are absent in the M-supergiant Alpha Ori. Narrow fluorescent lines of Fe II appear in the spectra of many giants and supergiants, apparently pumped by H Lyman Alpha, and formed in extended atmospheres. Instrumental characteristics that affect cool star spectra are discussed.Comment: Accept for publication in The Astrophysical Journal; 22 pages of text, 23 figures and 8 table

    Spectrum of Neuroradiologic Findings Associated with Monogenic Interferonopathies

    Get PDF
    The genetic interferonopathies are a heterogeneous group of disorders thought to be caused by the dysregulated expression of interferons and are now commonly considered in the differential diagnosis of children presenting with recurrent or persistent inflammatory phenotypes. With emerging therapeutic options, recognition of these disorders is increasingly important, and neuroimaging plays a vital role. In this article, we discuss the wide spectrum of neuroradiologic features associated with monogenic interferonopathies by reviewing the literature and illustrate these with cases from our institutions. These cases include intracerebral calcifications, white matter T2 hyperintensities, deep WM cysts, cerebral atrophy, large cerebral artery disease, bilateral striatal necrosis, and masslike lesions. A better understanding of the breadth of the neuroimaging phenotypes in conjunction with clinical and laboratory findings will enable earlier diagnosis and direct therapeutic strategies

    PN fast winds: Temporal structure and stellar rotation

    Full text link
    To diagnose the time-variable structure in the fast winds of central stars of planetary nebulae (CSPN), we present an analysis of P Cygni line profiles in FUSE satellite far-UV spectroscopic data. Archival spectra are retrieved to form time-series datasets for the H-rich CSPN NGC 6826, IC 418, IC 2149, IC 4593 and NGC 6543. Despite limitations due to the fragmented sampling of the time-series, we demonstrate that in all 5 CSPN the UV resonance lines are variable primarily due to the occurrence of blueward migrating discrete absorption components (DACs). Empirical (SEI) line-synthesis modelling is used to determine the range of fluctuations in radial optical depth, which are assigned to the temporal changes in large-scale wind structures. We argue that DACs are common in CSPN winds, and their empirical properties are akin to those of similar structures seen in the absorption troughs of massive OB stars. Constraints on PN central star rotation velocities are derived from Fast-Fourier Transform analysis of photospheric lines for our target stars. Favouring the causal role of co-rotating interaction regions, we explore connections between normalised DAC accelerations and rotation rates of PN central stars and O stars. The comparative properties suggest that the same physical mechanism is acting to generate large-scale structure in the line-driven winds in the two different settings.Comment: Accepted for publication in MNRAS; 10 pages, 5 figure

    Atmospheric parameters of 82 red giants in the Kepler field

    Full text link
    Context: Accurate fundamental parameters of stars are essential for the asteroseismic analysis of data from the NASA Kepler mission. Aims: We aim at determining accurate atmospheric parameters and the abundance pattern for a sample of 82 red giants that are targets for the Kepler mission. Methods: We have used high-resolution, high signal-to-noise spectra from three different spectrographs. We used the iterative spectral synthesis method VWA to derive the fundamental parameters from carefully selected high-quality iron lines. After determination of the fundamental parameters, abundances of 13 elements were measured using equivalent widths of the spectral lines. Results: We identify discrepancies in log g and [Fe/H], compared to the parameters based on photometric indices in the Kepler Input Catalogue (larger than 2.0 dex for log g and [Fe/H] for individual stars). The Teff found from spectroscopy and photometry shows good agreement within the uncertainties. We find good agreement between the spectroscopic log g and the log g derived from asteroseismology. Also, we see indications of a potential metallicity effect on the stellar oscillations. Conclusions: We have determined the fundamental parameters and element abundances of 82 red giants. The large discrepancies between the spectroscopic log g and [Fe/H] and values in the Kepler Input Catalogue emphasize the need for further detailed spectroscopic follow-up of the Kepler targets in order to produce reliable results from the asteroseismic analysis.Comment: 16 Pages, 12 Figures, accepted for publication in A&

    Developing reading-writing connections; the impact of explicit instruction of literary devices on the quality of children's narrative writing

    Get PDF
    The purpose of this collaborative schools-university study was to investigate how the explicit instruction of literary devices during designated literacy sessions could improve the quality of children's narrative writing. A guiding question for the study was: Can children's writing can be enhanced by teachers drawing attention to the literary devices used by professional writers or “mentor authors”? The study was conducted with 18 teachers, working as research partners in nine elementary schools over one school year. The research group explored ways of developing children as reflective authors, able to draft and redraft writing in response to peer and teacher feedback. Daily literacy sessions were complemented by weekly writing workshops where students engaged in authorial activity and experienced writers' perspectives and readers' demands (Harwayne, 1992; May, 2004). Methods for data collection included video recording of peer-peer and teacher-led group discussions and audio recording of teacher-child conferences. Samples of children's narrative writing were collected and a comparison was made between the quality of their independent writing at the beginning and end of the research period. The research group documented the importance of peer-peer and teacher-student discourse in the development of children's metalanguage and awareness of audience. The study suggests that reading, discussing, and evaluating mentor texts can have a positive impact on the quality of children's independent writing

    Cyberspace, Blockchain, Governance:How Technology Implies Normative Power and Regulation

    Get PDF
    Technologies and their inherent design choices create normative structures that affect governance. This chapter aims to illustrate how blockchain technology in particular introduces new norms into a legal framework. We first analyze the different forms of governance by distinguishing between old and new governance. With a view to code that functions as legal norms, Blockchain technology is particularly suited to create governance structures and mechanisms. However, one needs to be aware of the norms that are implicitly introduced into the legal system by a specific blockchain technology. We look at the blockchain technology that underlies cryptocurrencies such as Bitcoin. This blockchain introduces a decentralized, transparent, cryptographically locked and thus immutable shared ledger. In summary, these design choices have normative powers over the user and over user interaction. If this is indeed the case, then regulators have to actively assess newly introduced digital ledger technology and other technologies for their effect on the normative and legal system.</p
    • …
    corecore