To diagnose the time-variable structure in the fast winds of central stars of
planetary nebulae (CSPN), we present an analysis of P Cygni line profiles in
FUSE satellite far-UV spectroscopic data. Archival spectra are retrieved to
form time-series datasets for the H-rich CSPN NGC 6826, IC 418, IC 2149, IC
4593 and NGC 6543. Despite limitations due to the fragmented sampling of the
time-series, we demonstrate that in all 5 CSPN the UV resonance lines are
variable primarily due to the occurrence of blueward migrating discrete
absorption components (DACs). Empirical (SEI) line-synthesis modelling is used
to determine the range of fluctuations in radial optical depth, which are
assigned to the temporal changes in large-scale wind structures. We argue that
DACs are common in CSPN winds, and their empirical properties are akin to those
of similar structures seen in the absorption troughs of massive OB stars.
Constraints on PN central star rotation velocities are derived from
Fast-Fourier Transform analysis of photospheric lines for our target stars.
Favouring the causal role of co-rotating interaction regions, we explore
connections between normalised DAC accelerations and rotation rates of PN
central stars and O stars. The comparative properties suggest that the same
physical mechanism is acting to generate large-scale structure in the
line-driven winds in the two different settings.Comment: Accepted for publication in MNRAS; 10 pages, 5 figure