We present spectroscopic observations of the short-period cataclysmic
variable SW Ursa Majoris, obtained by the Far Ultraviolet Spectroscopic
Explorer (FUSE) satellite while the system was in quiescence. The data include
the resonance lines of O VI at 1031.91 and 1037.61 A. These lines are present
in emission, and they exhibit both narrow (~ 150 km/s) and broad (~ 2000 km/s)
components. The narrow O VI emission lines exhibit unusual double-peaked and
redshifted profiles. We attribute the source of this emission to a cooling flow
onto the surface of the white dwarf primary. The broad O VI emission most
likely originates in a thin, photoionized surface layer on the accretion disk.
We searched for emission from H_2 at 1050 and 1100 A, motivated by the
expectation that the bulk of the quiescent accretion disk is in the form of
cool, molecular gas. If H_2 is present, then our limits on the fluxes of the
H_2 lines are consistent with the presence of a surface layer of atomic H that
shields the interior of the disk. These results may indicate that accretion
operates primarily in the surface layers of the disk in SW UMa. We also
investigate the far-UV continuum of SW UMa and place an upper limit of 15,000 K
on the effective temperature of the white dwarf.Comment: 21 Pages, 3 figures, to be published in Ap