249 research outputs found

    2D and 3D Polar Plume Analysis from the Three Vantage Positions of STEREO/EUVI A, B, and SOHO/EIT

    Get PDF
    Polar plumes are seen as elongated objects starting at the solar polar regions. Here, we analyze these objects from a sequence of images taken simultaneously by the three spacecraft telescopes STEREO/EUVI A and B, and SOHO/EIT. We establish a method capable of automatically identifying plumes in solar EUV images close to the limb at 1.01 - 1.39 R in order to study their temporal evolution. This plume-identification method is based on a multiscale Hough-wavelet analysis. Then two methods to determined their 3D localization and structure are discussed: First, tomography using the filtered back-projection and including the differential rotation of the Sun and, secondly, conventional stereoscopic triangulation. We show that tomography and stereoscopy are complementary to study polar plumes. We also show that this systematic 2D identification and the proposed methods of 3D reconstruction are well suited, on one hand, to identify plumes individually and on the other hand, to analyze the distribution of plumes and inter-plume regions. Finally, the results are discussed focusing on the plume position with their cross-section area.Comment: 22 pages, 10 figures, Solar Physics articl

    Photometry in UV astronomical images of extended sources in crowded field using deblended images in optical visible bands as Bayesian priors

    Get PDF
    Photometry of astrophysical sources, galaxies and stars, in crowded field images, if an old problem, is still a challenging goal, as new space survey missions are launched, releasing new data with increased sensibility, resolution and field of view. The GALEX mission, observes in two UV bands and produces deep sky images of millions of galaxies or stars mixed together. These UV observations are of lower resolution than same field observed in visible bands, and with a very faint signal, at the level of the photon noise for a substantial fraction of objects. Our purpose is to use the better known optical counterparts as prior information in a Bayesian approach to deduce the UV flux. Photometry of extended sources has been addressed several times using various techniques: background determination via sigma clipping, adaptative-aperture, point-spread-function photometry, isophotal photometry, to lists some. The Bayesian approach of using optical priors for solving the UV photometry has already been applied by our team in a previous work. Here we describe the improvement of using the extended shape inferred by deblending the high resolution optical images and not only the position of the optical sources. The resulting photometric accuracy has been tested with simulation of crowded UV fields added on top of real UV images. Finally, this helps to converge to smaller and flat residual and increase the faint source detection threshold. It thus gives the opportunity to work on 2nd order effects, like improving the knowledge of the background or point-spread function by iterating on them

    Morphology, dynamics and plasma parameters of plumes and inter-plume regions in solar coronal holes

    Full text link
    Coronal plumes, which extend from solar coronal holes (CH) into the high corona and - possibly - into the solar wind (SW), can now continuously be studied with modern telescopes and spectrometers on spacecraft, in addition to investigations from the ground, in particular, during total eclipses. Despite the large amount of data available on these prominent features and related phenomena, many questions remained unanswered as to their generation and relative contributions to the high-speed streams emanating from CHs. An understanding of the processes of plume formation and evolution requires a better knowledge of the physical conditions at the base of CHs, in plumes and in the surrounding inter-plume regions (IPR). More specifically, information is needed on the magnetic field configuration, the electron densities and temperatures, effective ion temperatures, non-thermal motions, plume cross-sections relative to the size of a CH, the plasma bulk speeds, as well as any plume signatures in the SW. In spring 2007, the authors proposed a study on "Structure and dynamics of coronal plumes and inter-plume regions in solar coronal holes" to the International Space Science Institute (ISSI) in Bern to clarify some of these aspects by considering relevant observations and the extensive literature. This review summarizes the results and conclusions of the study. Stereoscopic observations allowed us to include three-dimensional reconstructions of plumes. Multi-instrument investigations carried out during several campaigns led to progress in some areas, such as plasma densities, temperatures, plume structure and the relation to other solar phenomena, but not all questions could be answered concerning the details of plume generation process(es) and interaction with the SW.Comment: To appear on: The Astronomy and Astrophysics Review. 72 pages, 30 figure

    The VIPERS Multi-Lambda Survey. I. UV and NIR Observations, multi-color catalogues and photometric redshifts

    Get PDF
    We present observations collected in the CFHTLS-VIPERS region in the ultraviolet (UV) with the GALEX satellite (far and near UV channels) and the near infrared with the CFHT/WIRCam camera (KsK_s-band) over an area of 22 and 27 deg2^2, respectively. The depth of the photometry was optimized to measure the physical properties (e.g., SFR, stellar masses) of all the galaxies in the VIPERS spectroscopic survey. The large volume explored by VIPERS will enable a unique investigation of the relationship between the galaxy properties and their environment (density field and cosmic web) at high redshift (0.5 < z < 1.2). In this paper, we present the observations, the data reductions and the build-up of the multi-color catalogues. The CFHTLS-T0007 (gri-{\chi}^2) images are used as reference to detect and measure the KsK_s-band photometry, while the T0007 u-selected sources are used as priors to perform the GALEX photometry based on a dedicated software (EMphot). Our final sample reaches NUVABNUV_{AB}~25 (at 5{\sigma}) and KABK_{AB}~22 (at 3{\sigma}). The large spectroscopic sample (~51,000 spectroscopic redshifts) allows us to highlight the robustness of our star/galaxy separation, and the reliability of our photometric redshifts with a typical accuracy σz≤\sigma_z \le 0.04 and a catastrophic failure rate {\eta} < 2% down to i~23. We present various tests on the KsK_s band completeness and photometric redshift accuracy by comparing with existing, overlapping deep photometric catalogues. Finally, we discuss the BzK sample of passive and active galaxies at high redshift and the evolution of galaxy morphology in the (NUV-r) vs (r-K_s) diagram at low redshift (z < 0.25) thanks to the high image quality of the CFHTLS. The images, catalogues and photometric redshifts for 1.5 million sources (down to NUV≤NUV \le 25 or Ks≤K_s \le 22) are released and available at this URL: http://cesam.lam.fr/vipers-mls/Comment: 14 pages, 16 figures. Accepted for publication in A&A. Version to be publishe

    Intercomparison of the LASCO-C2, SECCHI-COR1, SECCHI-COR2, and Mk4 Coronagraphs

    Get PDF
    In order to assess the reliability and consistency of white-light coronagraph measurements, we report on quantitative comparisons between polarized brightness [pB] and total brightness [B] images taken by the following white-light coronagraphs: LASCO-C2 on SOHO, SECCHI-COR1 and -COR2 on STEREO, and the ground-based MLSO-Mk4. The data for this comparison were taken on 16 April 2007, when both STEREO spacecraft were within 3.1 deg. of Earths heliographic longitude, affording essentially the same view of the Sun for all of the instruments. Due to the difficulties of estimating stray-light backgrounds in COR1 and COR2, only Mk4 and C2 produce reliable coronal-hole values (but not at overlapping heights), and these cannot be validated without rocket flights or ground-based eclipse measurements. Generally, the agreement between all of the instruments pB values is within the uncertainties in bright streamer structures, implying that measurements of bright CMEs also should be trustworthy. Dominant sources of uncertainty and stray light are discussed, as is the design of future coronagraphs from the perspective of the experiences with these instruments

    Transit timing analysis of CoRoT-1b

    Full text link
    CoRoT, the pioneer space-based transit search, steadily provides thousands of high-precision light curves with continuous time sampling over periods of up to 5 months. The transits of a planet perturbed by an additional object are not strictly periodic. By studying the transit timing variations (TTVs), additional objects can be detected in the system. A transit timing analysis of CoRoT-1b is carried out to constrain the existence of additional planets in the system. We used data obtained by an improved version of the CoRoT data pipeline (version 2.0). Individual transits were fitted to determine the mid-transit times, and we analyzed the derived O−CO-C diagram. N-body integrations were used to place limits on secondary planets. No periodic timing variations with a period shorter than the observational window (55 days) are found. The presence of an Earth-mass Trojan is not likely. A planet of mass greater than ∼1\sim 1 Earth mass can be ruled out by the present data if the object is in a 2:1 (exterior) mean motion resonance with CoRoT-1b. Considering initially circular orbits: (i) super-Earths (less than 10 Earth-masses) are excluded for periods less than about 3.5 days, (ii) Saturn-like planets can be ruled out for periods less than about 5 days, (iii) Jupiter-like planets should have a minimum orbital period of about 6.5 days.Comment: 6 pages, accepted at A&

    Noise properties of the CoRoT data: a planet-finding perspective

    Get PDF
    In this short paper, we study the photometric precision of stellar light curves obtained by the CoRoT satellite in its planet finding channel, with a particular emphasis on the timescales characteristic of planetary transits. Together with other articles in the same issue of this journal, it forms an attempt to provide the building blocks for a statistical interpretation of the CoRoT planet and eclipsing binary catch to date. After pre-processing the light curves so as to minimise long-term variations and outliers, we measure the scatter of the light curves in the first three CoRoT runs lasting more than 1 month, using an iterative non-linear filter to isolate signal on the timescales of interest. The bevhaiour of the noise on 2h timescales is well-described a power-law with index 0.25 in R-magnitude, ranging from 0.1mmag at R=11.5 to 1mmag at R=16, which is close to the pre-launch specification, though still a factor 2-3 above the photon noise due to residual jitter noise and hot pixel events. There is evidence for a slight degradation of the performance over time. We find clear evidence for enhanced variability on hours timescales (at the level of 0.5 mmag) in stars identified as likely giants from their R-magnitude and B-V colour, which represent approximately 60 and 20% of the observed population in the direction of Aquila and Monoceros respectively. On the other hand, median correlated noise levels over 2h for dwarf stars are extremely low, reaching 0.05mmag at the bright end.Comment: 5 pages, 4 figures, accepted for publication in A&

    Removing systematics from the CoRoT light curves: I. Magnitude-Dependent Zero Point

    Get PDF
    This paper presents an analysis that searched for systematic effects within the CoRoT exoplanet field light curves. The analysis identified a systematic effect that modified the zero point of most CoRoT exposures as a function of stellar magnitude. We could find this effect only after preparing a set of learning light curves that were relatively free of stellar and instrumental noise. Correcting for this effect, rejecting outliers that appear in almost every exposure, and applying SysRem, reduced the stellar RMS by about 20 %, without attenuating transit signals.Comment: Accepted for publication in Astronomy and Astrophysic

    Transiting exoplanets from the CoRoT space mission III. The spectroscopic transit of CoRoT-Exo-2b with SOPHIE and HARPS

    Get PDF
    We report on the spectroscopic transit of the massive hot-Jupiter CoRoT-Exo-2b observed with the high-precision spectrographs SOPHIE and HARPS. By modeling the radial velocity anomaly occurring during the transit due to the Rossiter-McLaughlin (RM) effect, we determine the sky-projected angle between the stellar spin and the planetary orbital axis to be close to zero lambda=7.2+-4.5 deg, and we secure the planetary nature of CoRoT-Exo-2b. We discuss the influence of the stellar activity on the RM modeling. Spectral analysis of the parent star from HARPS spectra are presented.Comment: A&A Letters (in press), 5 pages, 2 figure

    The secondary eclipse of CoRoT-1b

    Full text link
    The transiting planet CoRoT-1b is thought to belong to the pM-class of planets, in which the thermal emission dominates in the optical wavelengths. We present a detection of its secondary eclipse in the CoRoT white channel data, whose response function goes from ~400 to ~1000 nm. We used two different filtering approaches, and several methods to evaluate the significance of a detection of the secondary eclipse. We detect a secondary eclipse centered within 20 min at the expected times for a circular orbit, with a depth of 0.016+/-0.006%. The center of the eclipse is translated in a 1-sigma upper limit to the planet's eccentricity of ecosomega<0.014. Under the assumption of a zero Bond Albedo and blackbody emission from the planet, it corresponds to a T_{CoRoT}=2330 +120-140 K. We provide the equilibrium temperatures of the planet as a function of the amount of reflected light. If the planet is in thermal equilibrium with the incident flux from the star, our results imply an inefficient transport mechanism of the flux from the day to the night sides.Comment: 6 pages, to appear in A&A, submitted 18 march 2009, accepted 7 July 200
    • …
    corecore