10 research outputs found

    Li-doped ZnO nanorods with single-crystal quality - non-classical crystallization and self-assembly into mesoporous materials

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugÀnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The benefits and promise of nanoscale dimensions for the properties of (ceramic) semiconductors are widely known. 1-D nanostructures in particular have proven to be of extraordinary relevance due to their applicability in future electronic and optoelectronic devices. Key to successful technological implementation of semiconductor nanostructures is the control of their electronic properties via doping. Despite its tremendous importance, precise chemical doping of defined nano-objects has been addressed rarely so far. Frequent problems are the creation of secondary defects and related undesired property changes by incorporation of hetero-elements, and the difficulty in ensuring a uniform and precise positioning of the dopant in the nanocrystal lattice. Here, we present the synthesis of Li-doped zinc oxide nanorods, which possess excellent (single-crystal) quality. The method is based on a novel non-classical crystallization mechanism, comprising an unusually oriented disassembly step. Afterwards, the nanorods are incorporated into mesoporous layers using colloidal self-assembly. Proof-of-principle gas sensing measurements with these novel materials demonstrate the beneficial role of Li-doping, indicating not only better conductivity but also the occurrence of catalytic effects

    Synthetic Routes to Crystalline Complex Metal Alkyl Carbonates and Hydroxycarbonates via Sol–Gel Chemistry—Perspectives for Advanced Materials in Catalysis

    Get PDF
    Metal alkoxides are easily available and versatile precursors for functional materials, such as solid catalysts. However, the poor solubility of metal alkoxides in organic solvents usually hinders their facile application in sol–gel processes and complicates access to complex carbonate or oxidic compounds after hydrolysis of the precursors. In our contribution we have therefore shown three different solubilization strategies for metal alkoxides, namely the derivatization, the hetero-metallization and CO2 insertion. The latter strategy leads to a stoichiometric insertion of CO2 into the metal–oxygen bond of the alkoxide and the subsequent formation of metal alkyl carbonates. These precursors can then be employed advantageously in sol–gel chemistry and, after controlled hydrolysis, result in chemically defined crystalline carbonates and hydroxycarbonates. Cu- and Zn-containing carbonates and hydroxycarbonates were used in an exemplary study for the synthesis of Cu/Zn-based bulk catalysts for methanol synthesis with a final comparable catalytic activity to commercial standard reference catalysts

    Li-doped ZnO nanorods with single-crystal quality - non-classical crystallization and self-assembly into mesoporous materials

    No full text
    The benefits and promise of nanoscale dimensions for the properties of (ceramic) semiconductors are widely known. 1-D nanostructures in particular have proven to be of extraordinary relevance due to their applicability in future electronic and optoelectronic devices. Key to successful technological implementation of semiconductor nanostructures is the control of their electronic properties via doping. Despite its tremendous importance, precise chemical doping of defined nano-objects has been addressed rarely so far. Frequent problems are the creation of secondary defects and related undesired property changes by incorporation of hetero-elements, and the difficulty in ensuring a uniform and precise positioning of the dopant in the nanocrystal lattice. Here, we present the synthesis of Li-doped zinc oxide nanorods, which possess excellent (single-crystal) quality. The method is based on a novel non-classical crystallization mechanism, comprising an unusually oriented disassembly step. Afterwards, the nanorods are incorporated into mesoporous layers using colloidal self-assembly. Proof-of-principle gas sensing measurements with these novel materials demonstrate the beneficial role of Li-doping, indicating not only better conductivity but also the occurrence of catalytic effects.We gratefully acknowledge the Carl-Zeiss Foundation for funding (REFINE research initiative).Peer Reviewe

    Biomimetic crystallization of anisotropic zinc oxide nanoparticles in the homogeneous Phase : shape control by surface additives applied under thermodynamic or kinetic control

    No full text
    The bottom-up synthesis of functional materials has become one of the most versatile tools of nanochemistry. It requires not only control over composition and particle size, but also over shape. The fine-control over shape demands an in-depth knowledge about the nucleation and growth of inorganic crystals in the homogeneous phase. A detailed, mechanistic study about the crystallization of zinc oxide is presented here. The findings can easily be transferred to other binary solids with significant ionic character and in particular to those adopting polar crystal classes. New insights about the role of anionic capping agents, cations and kinetic factors during crystallization are reported. One has to conclude that the influence of the cations, specifically the interplay between cation and anion is more significant than expected. Furthermore, low-molecular weight additives containing carboxylic groups are compared to macromolecular additives leading to unusual mesocrystals. Similarities to the concepts of biomineralization are discussed. Finally, a drastic enhancement of photocatalytic activity by several orders of magnitude could be observed for shape-engineered ZnO nanoparticles

    Synthetic Routes to Crystalline Complex Metal Alkyl Carbonates and Hydroxycarbonates via Sol–Gel Chemistry—Perspectives for Advanced Materials in Catalysis

    No full text
    Metal alkoxides are easily available and versatile precursors for functional materials, such as solid catalysts. However, the poor solubility of metal alkoxides in organic solvents usually hinders their facile application in sol–gel processes and complicates access to complex carbonate or oxidic compounds after hydrolysis of the precursors. In our contribution we have therefore shown three different solubilization strategies for metal alkoxides, namely the derivatization, the hetero-metallization and CO2 insertion. The latter strategy leads to a stoichiometric insertion of CO2 into the metal–oxygen bond of the alkoxide and the subsequent formation of metal alkyl carbonates. These precursors can then be employed advantageously in sol–gel chemistry and, after controlled hydrolysis, result in chemically defined crystalline carbonates and hydroxycarbonates. Cu- and Zn-containing carbonates and hydroxycarbonates were used in an exemplary study for the synthesis of Cu/Zn-based bulk catalysts for methanol synthesis with a final comparable catalytic activity to commercial standard reference catalysts

    Chemical Modification of Oxidized Polyethylene Enables Access to Functional Polyethylenes with Greater Reuse

    No full text
    Polyethylene is a commodity material that is widely used because of its low cost and valuable properties. However, the lack of functional groups in polyethylene limits its use in applications that include adhesives, gas barriers, and plastic blends. The inertness of polyethylene makes it difficult to install groups that would enhance its properties and enable programmed chemical decomposition. To overcome these deficiencies, the installation of pendent functional groups that imbue polyethylene with enhanced properties is an attractive strategy to overcome its inherent limitations. Here, we describe strategies to derivatize oxidized polyethylene that contains both ketones and alcohols to monofunctional variants with bulk properties superior to those of unmodified polyethylene. Iridium-catalyzed transfer dehydrogenation with acetone furnished polyethylenes with only ketones, and ruthenium-catalyzed hydrogenation with hydrogen furnished polyethylenes with only alcohols. We demonstrate that the ratio of these functional groups can be controlled by reduction with stoichiometric hydride-containing reagents. The ketones and alcohols serve as sites to introduce esters and oximes onto the polymer, thereby improving surface and bulk properties over those of polyethylene. These esters and oximes were removed by hydrolysis to regenerate the original oxygenated polyethylenes, showing how functionalization can lead to materials with circularity. Waste polyethylenes were equally amenable to oxidative functionalization and derivatization of the oxidized material, showing that this low- or negative-value feedstock can be used to prepare materials of higher value. Finally, the derivatized polymers with distinct solubilities were separated from mechanically mixed plastic blends by selective dissolution, demonstrating that functionalization can lead to novel approaches for distinguishing and separating polymers from a mixture
    corecore