1,026 research outputs found

    Effective Dynamic Range in Measurements with Flash Analog-to-Digital Convertor

    Full text link
    Flash Analog to Digital Convertor (FADC) is frequently used in nuclear and particle physics experiments, often as the major component in big multi-channel systems. The large data volume makes the optimization of operating parameters necessary. This article reports a study of a method to extend the dynamic range of an 8-bit FADC from the nominal 28\rm{2^8} value. By comparing the integrated pulse area with that of a reference profile, good energy reconstruction and event identification can be achieved on saturated events from CsI(Tl) crystal scintillators. The effective dynamic range can be extended by at least 4 more bits. The algorithm is generic and is expected to be applicable to other detector systems with FADC readout.Comment: 19 pages, 1 table, 10 figure

    Stationary solutions of the one-dimensional nonlinear Schroedinger equation: I. Case of repulsive nonlinearity

    Full text link
    All stationary solutions to the one-dimensional nonlinear Schroedinger equation under box and periodic boundary conditions are presented in analytic form. We consider the case of repulsive nonlinearity; in a companion paper we treat the attractive case. Our solutions take the form of stationary trains of dark or grey density-notch solitons. Real stationary states are in one-to-one correspondence with those of the linear Schr\"odinger equation. Complex stationary states are uniquely nonlinear, nodeless, and symmetry-breaking. Our solutions apply to many physical contexts, including the Bose-Einstein condensate and optical pulses in fibers.Comment: 11 pages, 7 figures -- revised versio

    Marine power distribution system fault location using a portable injection unit

    Get PDF
    A portable injection unit for Active Impedance Estimation (AIE) is built and tested in a DC zonal marine power distribution system to provide useful information for system protection and restoration. The portable unit generates current “spikes” and injects them into the system once short circuit faults are detected (by measuring the system voltage drop). The faulted system impedance can be estimated by AIE and comparing the estimated impedance with the pre-calibrated value, the fault location can be determined. The proposed method does not rely on system fault transient information or communication from the remote-end measurement and offers fast and accurate fault location in DC marine distribution systems. The proposed method has been tested and validated on a 750V, 2 MW twin bus DC Commercial Test Facility with the system both de-energised and energised

    Measurement of the Intrinsic Radiopurity of Cs-137/U-235/U-238/Th-232 in CsI(Tl) Crystal Scintillators

    Full text link
    The inorganic crystal scintillator CsI(Tl) has been used for low energy neutrino and Dark Matter experiments, where the intrinsic radiopurity is an issue of major importance. Low-background data were taken with a CsI(Tl) crystal array at the Kuo-Sheng Reactor Neutrino Laboratory. The pulse shape discrimination capabilities of the crystal, as well as the temporal and spatial correlations of the events, provide powerful means of measuring the intrinsic radiopurity of Cs-137 as well as the U-235, U-238 and Th-232 series. The event selection algorithms are described, with which the decay half-lives of Po-218, Po-214, Rn-220, Po-216 and Po-212 were derived. The measurements of the contamination levels, their concentration gradients with the crystal growth axis, and the uniformity among different crystal samples, are reported. The radiopurity in the U-238 and Th-232 series are comparable to those of the best reported in other crystal scintillators. Significant improvements in measurement sensitivities were achieved, similar to those from dedicated massive liquid scintillator detector. This analysis also provides in situ measurements of the detector performance parameters, such as spatial resolution, quenching factors, and data acquisition dead time.Comment: 28 pages, 12 figure

    Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments

    Full text link
    Crystal scintillators provide potential merits for the pursuit of low-energy low-background experiments. A CsI(Tl) scintillating crystal detector is being constructed to study low-energy neutrino physics at a nuclear reactor, while projects are underway to adopt this technique for dark matter searches. The choice of the geometrical parameters of the crystal modules, as well as the optimization of the read-out scheme, are the results of an R&D program. Crystals with 40 cm in length were developed. The detector requirements and the achieved performance of the prototypes are presented. Future prospects for this technique are discussed.Comment: 32 pages, 14 figure

    Observed photodetachment in parallel electric and magnetic fields

    Full text link
    We investigate photodetachment from negative ions in a homogeneous 1.0-T magnetic field and a parallel electric field of approximately 10 V/cm. A theoretical model for detachment in combined fields is presented. Calculations show that a field of 10 V/cm or more should considerably diminish the Landau structure in the detachment cross section. The ions are produced and stored in a Penning ion trap and illuminated by a single-mode dye laser. We present preliminary results for detachment from S- showing qualitative agreement with the model. Future directions of the work are also discussed.Comment: Nine pages, five figures, minor revisions showing final publicatio

    Prospects of Scintillating Crystal Detector in Low-Energy Low-Background Experiments

    Get PDF
    Scintillating crystal detector offers potential advantages in low-energy (keV-MeV range) low-background experiments for particle physics and astrophysics. The merits are discussed using CsI(Tl) crystal as illustrations. The various physics topics which can be pursued with this detector technology are summarized. A conceptual design for a generic detector is presented.Comment: 20 pages, 1 tables, 7 figures, submitted to Astroparticle Physic

    Pulse Shape Discrimination Techniques in Scintillating CsI(Tl) Crystals

    Full text link
    There are recent interests with CsI(Tl) scintillating crystals for Dark Matter experiments. The key merit is the capability to differentiate nuclear recoil (nr) signatures from the background β/γ\beta / \gamma-events due to ambient radioactivity on the basis of their different pulse shapes. One of the major experimental challenges is to perform such pulse shape analysis in the statistics-limited domain where the light output is close to the detection threshold. Using data derived from measurements with low energy γ\gamma's and nuclear recoils due to neutron elastic scatterings, it was verified that the pulse shapes between β/γ\beta / \gamma-events are different. Several methods of pulse shape discrimination are studied, and their relative merits are compared. Full digitization of the pulse shapes is crucial to achieve good discrimination. Advanced software techniques with mean time, neural network and likelihood ratios give rise to satisfactory performance, and are superior to the conventional Double Charge method commonly applied at higher energies. Pulse shape discrimination becomes effective starting at a light yield of about 20 photo-electrons. This corresponds to a detection threshold of about 5 keV electron-equivalence energy, or 40-50 keV recoil kinetic energy, in realistic experiments.Comment: 20 pages, 7 figure
    corecore