187 research outputs found

    Does Taking One Step Back Get You Two Steps Forward? Grade Retention and School Performance in Poor Areas in Rural China

    Get PDF
    Despite the rise in grade retention in poor areas in rural China recently, little work has been done to understand the impact of grade retention on the educational performance of students in these areas in rural China. This paper seeks to redress this shortcoming and examines the effect of grade retention on educational performance on 1649 students in 36 elementary schools in Shaanxi province. With a dataset that was collected from a survey designed specifically to capture school performance of students before and after they were retained, we use Differences-in-Differences, Propensity Score Matching and Differences-in-Differences Matching approaches to analyze the effect of grade retention on school performance. Although the descriptive analysis shows that grade retention helps to improve the scores of the students that were retained, somewhat surprisingly, the results from the multivariate analysis consistently show that there is no significant positive effect of grade retention on school performance of the students. In fact, in some cases (e.g., for the students who repeat grade 2), grade retention is shown to hurt school performance.

    Experiment on separated layer rock failure technology for stress reduction of entry under coal pillar in mining conditions

    Get PDF
    Longwall entrance is especially vulnerable to the combined mining of nearby coal seams because of the substantial deformation disaster loaded by the abutment stress caused by the mining disturbance. Changes to the fracture characteristics, movement behavior, and structural morphology of the bearing structure above the coal pillar are recommended using the separated layer rock failure technology (SLRFT) to safeguard the entry beneath the coal pillar from high abutment stress. To simulate the impacts of the SLRFT on the decrease of the abutment stress surrounding the entry under the coal pillar under the plane–stress circumstances, two experimental models were created. Abutment stress revolution, roof movement laws, and fracture features were all tracked using three identical monitoring systems in each experimental model. The experimental results indicate that SLRFT generates the shorter caving step length, more layered collapse, and higher caving height of the immediate roof, which improves the dilatancy of caving rock mass, the filling rate, and the compaction degree of the worked-out area. In the ceiling above the worked-out area, the fracture progresses from a non-penetrating horizontal and oblique gaping fracture to stepped closed fractures and piercing fractures. The main roof’s subsidence shifts from a linear, slow tendency to a stepped, fast one. The bearing structure changes from two-side cantilever structure with a T type into one-side cantilever structure with a basin type. Because the compacted worked-out region has a bigger support area, more of the overburden load is transferred there, weakening the abutment stress around the longwall entry from 12.5 kPa to 3.7 kPa. The stress reduction degree increases with the reduction of the cantilever length of the bearing structure and the increasing of the support coefficient of the compacted worked-out area. These findings illustrate the effectiveness of SLRFT in lowering entrance stress. With the established experimental model, it is possible to evaluate the viability, efficiency, and design of SLRFT under various engineering and geological circumstances

    Large Ecosystem Service Benefits of Assisted Natural Regeneration

    Get PDF
    China manages the largest monoculture plantations in the world, with 24% being Chinese fir plantations. Maximizing the ecosystem services of Chinese fir plantations has important implications in global carbon cycle and biodiversity protection. Assisted natural regeneration (ANR) is a practice to convert degraded lands into more productive forests with great ecosystems services. However, the quantitative understanding of ANR ecosystem service benefits is very limited. We conducted a comprehensive field manipulation experiment to evaluate the ANR potentials. We quantified and compared key ecosystem services including surface runoff, sediment yield, dissolved organic carbon export, plant diversity, and aboveground carbon accumulation of ANR of secondary forests dominated by Castanopsis carlesii to that of Chinese fir and C. carlesii plantations. Our results showed that ANR of C. carlesii forest reduced surface runoff and sediment yield up to 50% compared with other young plantations in the first 3 years and substantially increased plant diversity. ANR also reduced the export of dissolved organic carbon by 60–90% in the first 2 years. Aboveground biomass of the young ANR forest was approximately 3–4 times of that of other young plantations, while aboveground biomass of mature ANR forests was approximately 1.4 times of that of mature Chinese fir plantations of the same age. If all Chinese fir plantations in China were replaced by ANR forests, potentially 0.7 Pg more carbon will be stored in aboveground in one rotation (25 years). The results indicate that ANR triggers positive feedbacks among soil and water conservation, biodiversity protection, and biomass accumulation and thereby enhances ecosystem services

    Percutaneous angioplasty and/or stenting versus aggressive medical therapy in patients with symptomatic intracranial atherosclerotic stenosis: a 1-year follow-up study

    Get PDF
    BackgroundSymptomatic intracranial atherosclerotic stenosis (sICAS) is one of the common causes of ischemic stroke. However, the treatment of sICAS remains a challenge in the past with unfavorable findings. The purpose of this study was to explore the effect of stenting versus aggressive medical management on preventing recurrent stroke in patients with sICAS.MethodsWe prospectively collected the clinical information of patients with sICAS who underwent percutaneous angioplasty and/or stenting (PTAS) or aggressive medical therapy from March 2020 to February 2022. Propensity score matching (PSM) was employed to ensure well-balanced characteristics of two groups. The primary outcome endpoint was defined as recurrent stroke or transient ischemic attack (TIA) within 1 year.ResultsWe enrolled 207 patients (51 in the PTAS and 156 in the aggressive medical groups) with sICAS. No significant difference was found between PTAS group and aggressive medical group for the risk of stroke or TIA in the same territory beyond 30 days through 6 months (P = 0.570) and beyond 30 days through 1 year (P = 0.739) except for within 30 days (P = 0.003). Furthermore, none showed a significant difference for disabling stroke, death and intracranial hemorrhage within 1 year. These results remain stable after adjustment. After PSM, all the outcomes have no significant difference between these two groups.ConclusionThe PTAS has similar treatment outcomes compared with aggressive medical therapy in patients with sICAS across 1-year follow-up

    Mass deworming for improving health and cognition of children in endemic helminth areas: A systematic review and individual participant data network meta‐analysis

    Get PDF
    Background: Soil transmitted (or intestinal) helminths and schistosomes affect millions of children worldwide. Objectives: To use individual participant data network meta-analysis (NMA) to explore the effects of different types and frequency of deworming drugs on anaemia, cognition and growth across potential effect modifiers. Search Methods: We developed a search strategy with an information scientist to search MEDLINE, CINAHL, LILACS, Embase, the Cochrane Library, Econlit, Internet Documents in Economics Access Service (IDEAS), Public Affairs Information Service (PAIS), Social Services Abstracts, Global Health CABI and CAB Abstracts up to March 27, 2018. We also searched grey literature, websites, contacted authors and screened references of relevant systematic reviews. Selection Criteria: We included randomised and quasirandomised deworming trials in children for deworming compared to placebo or other interventions with data on baseline infection. Data Collection and Analysis: We conducted NMA with individual participant data (IPD), using a frequentist approach for random-effects NMA. The covariates were: age, sex, weight, height, haemoglobin and infection intensity. The effect estimate chosen was the mean difference for the continuous outcome of interest. Results: We received data from 19 randomized controlled trials with 31,945 participants. Overall risk of bias was low. There were no statistically significant subgroup effects across any of the potential effect modifiers. However, analyses showed that there may be greater effects on weight for moderate to heavily infected children (very low certainty evidence). Authors' Conclusions: This analysis reinforces the case against mass deworming at a population-level, finding little effect on nutritional status or cognition. However, children with heavier intensity infections may benefit more. We urge the global community to adopt calls to make data available in open repositories to facilitate IPD analyses such as this, which aim to assess effects for the most vulnerable individuals

    Demonstrating approaches to chemically modify the surface of Ag nanoparticles in order to influence their cytotoxicity and biodistribution after single dose acute intravenous administration

    Get PDF
    With the advance in material science and the need to diversify market applications, silver nanoparticles (AgNPs) are modified by different surface coatings. However, how these surface modifications influence the effects of AgNPs on human health is still largely unknown. We have evaluated the uptake, toxicity and pharmacokinetics of AgNPs coated with citrate, polyethylene glycol, polyvinyl pyrolidone and branched polyethyleneimine (Citrate AgNPs, PEG AgNPs, PVP AgNPs and BPEI AgNPs, respectively). Our results demonstrated that the toxicity of AgNPs depends on the intracellular localization that was highly dependent on the surface charge. BPEI AgNPs ( potential=+46.5mV) induced the highest cytotoxicity and DNA fragmentation in Hepa1c1c7. In addition, it showed the highest damage to the nucleus of liver cells in the exposed mice, which is associated with a high accumulation in liver tissues. The PEG AgNPs ( potential=-16.2mV) showed the cytotoxicity, a long blood circulation, as well as bioaccumulation in spleen (34.33 mu g/g), which suggest better biocompatibility compared to the other chemically modified AgNPs. Moreover, the adsorption ability with bovine serum albumin revealed that the PEG surface of AgNPs has an optimal biological inertia and can effectively resist opsonization or non-specific binding to protein in mice. The overall results indicated that the biodistribution of AgNPs was significantly dependent on surface chemistry: BPEI AgNPs>Citrate AgNPs=PVP AgNPs>PEG AgNPs. This toxicological data could be useful in supporting the development of safe AgNPs for consumer products and drug delivery applications
    corecore