76 research outputs found
Planet Hunters: New Kepler planet candidates from analysis of quarter 2
We present new planet candidates identified in NASA Kepler quarter two public
release data by volunteers engaged in the Planet Hunters citizen science
project. The two candidates presented here survive checks for false-positives,
including examination of the pixel offset to constrain the possibility of a
background eclipsing binary. The orbital periods of the planet candidates are
97.46 days (KIC 4552729) and 284.03 (KIC 10005758) days and the modeled planet
radii are 5.3 and 3.8 R_Earth. The latter star has an additional known planet
candidate with a radius of 5.05 R_Earth and a period of 134.49 which was
detected by the Kepler pipeline. The discovery of these candidates illustrates
the value of massively distributed volunteer review of the Kepler database to
recover candidates which were otherwise uncatalogued.Comment: Accepted to A
Transit Timing Observations from Kepler: III. Confirmation of 4 Multiple Planet Systems by a Fourier-Domain Study of Anti-correlated Transit Timing Variations
We present a method to confirm the planetary nature of objects in systems
with multiple transiting exoplanet candidates. This method involves a
Fourier-Domain analysis of the deviations in the transit times from a constant
period that result from dynamical interactions within the system. The
combination of observed anti-correlations in the transit times and mass
constraints from dynamical stability allow us to claim the discovery of four
planetary systems Kepler-25, Kepler-26, Kepler-27, and Kepler-28, containing
eight planets and one additional planet candidate.Comment: Accepted to MNRA
Alignment of the stellar spin with the orbits of a three-planet system
The Sun’s equator and the planets’ orbital planes are nearly aligned, which is presumably a consequence of their formation from a single spinning gaseous disk. For exoplanetary systems this well-aligned configuration is not guaranteed: dynamical interactions may tilt planetary orbits, or stars may be misaligned with the protoplanetary disk through chaotic accretion1 , magnetic interactions[superscript 2] or torques from neighbouring stars. Indeed, isolated ‘hot Jupiters’ are often misaligned and even orbiting retrograde[superscript 3, 4]. Here we report an analysis of transits of planets over starspots[superscript 5, 6, 7] on the Sun-like star Kepler-30 (ref. 8), and show that the orbits of its three planets are aligned with the stellar equator. Furthermore, the orbits are aligned with one another to within a few degrees. This configuration is similar to that of our Solar System, and contrasts with the isolated hot Jupiters. The orderly alignment seen in the Kepler-30 system suggests that high obliquities are confined to systems that experienced disruptive dynamical interactions. Should this be corroborated by observations of other coplanar multi-planet systems, then star–disk misalignments would be ruled out as the explanation for the high obliquities of hot Jupiters, and dynamical interactions would be implicated as the origin of hot Jupiters.United States. National Aeronautics and Space Administration (Science MissionDirectorate
Planet Hunters: Assessing the Kepler Inventory of Short Period Planets
We present the results from a search of data from the first 33.5 days of the
Kepler science mission (Quarter 1) for exoplanet transits by the Planet Hunters
citizen science project. Planet Hunters enlists members of the general public
to visually identify transits in the publicly released Kepler light curves via
the World Wide Web. Over 24,000 volunteers reviewed the Kepler Quarter 1 data
set. We examine the abundance of \geq 2 R\oplus planets on short period (< 15
days) orbits based on Planet Hunters detections. We present these results along
with an analysis of the detection efficiency of human classifiers to identify
planetary transits including a comparison to the Kepler inventory of planet
candidates. Although performance drops rapidly for smaller radii, \geq 4
R\oplus Planet Hunters \geq 85% efficient at identifying transit signals for
planets with periods less than 15 days for the Kepler sample of target stars.
Our high efficiency rate for simulated transits along with recovery of the
majority of Kepler \geq 4 R\oplus planets suggest suggests the Kepler inventory
of \geq 4 R\oplus short period planets is nearly complete.Comment: 41 pages,13 figures, 8 tables, accepted to Ap
Two Earth-sized planets orbiting Kepler-20
Since the discovery of the first extrasolar giant planets around Sun-like
stars, evolving observational capabilities have brought us closer to the
detection of true Earth analogues. The size of an exoplanet can be determined
when it periodically passes in front of (transits) its parent star, causing a
decrease in starlight proportional to its radius. The smallest exoplanet
hitherto discovered has a radius 1.42 times that of the Earth's radius (R
Earth), and hence has 2.9 times its volume. Here we report the discovery of two
planets, one Earth-sized (1.03R Earth) and the other smaller than the Earth
(0.87R Earth), orbiting the star Kepler-20, which is already known to host
three other, larger, transiting planets. The gravitational pull of the new
planets on the parent star is too small to measure with current
instrumentation. We apply a statistical method to show that the likelihood of
the planetary interpretation of the transit signals is more than three orders
of magnitude larger than that of the alternative hypothesis that the signals
result from an eclipsing binary star. Theoretical considerations imply that
these planets are rocky, with a composition of iron and silicate. The outer
planet could have developed a thick water vapour atmosphere.Comment: Letter to Nature; Received 8 November; accepted 13 December 2011;
Published online 20 December 201
Masses, radii, and orbits of small Kepler planets : The transition from gaseous to rocky planets
We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than 2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).Peer reviewedFinal Accepted Versio
Planetary Candidates Observed by Kepler, III: Analysis of the First 16 Months of Data
New transiting planet candidates are identified in sixteen months (May 2009 -
September 2010) of data from the Kepler spacecraft. Nearly five thousand
periodic transit-like signals are vetted against astrophysical and instrumental
false positives yielding 1,091 viable new planet candidates, bringing the total
count up to over 2,300. Improved vetting metrics are employed, contributing to
higher catalog reliability. Most notable is the noise-weighted robust averaging
of multi-quarter photo-center offsets derived from difference image analysis
which identifies likely background eclipsing binaries. Twenty-two months of
photometry are used for the purpose of characterizing each of the new
candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are
tabulated as well as the products of light curve modeling: reduced radius
(Rp/R*), reduced semi-major axis (d/R*), and impact parameter (b). The largest
fractional increases are seen for the smallest planet candidates (197% for
candidates smaller than 2Re compared to 52% for candidates larger than 2Re) and
those at longer orbital periods (123% for candidates outside of 50-day orbits
versus 85% for candidates inside of 50-day orbits). The gains are larger than
expected from increasing the observing window from thirteen months (Quarter 1--
Quarter 5) to sixteen months (Quarter 1 -- Quarter 6). This demonstrates the
benefit of continued development of pipeline analysis software. The fraction of
all host stars with multiple candidates has grown from 17% to 20%, and the
paucity of short-period giant planets in multiple systems is still evident. The
progression toward smaller planets at longer orbital periods with each new
catalog release suggests that Earth-size planets in the Habitable Zone are
forthcoming if, indeed, such planets are abundant.Comment: Submitted to ApJS. Machine-readable tables are available at
http://kepler.nasa.gov, http://archive.stsci.edu/kepler/results.html, and the
NASA Exoplanet Archiv
- …