51 research outputs found

    A framework for prospectively defining progression rules for internal pilot studies monitoring recruitment

    Get PDF
    Supplemental Material for A framework for prospectively defining progression rules for internal pilot studies monitoring recruitment by Lisa V Hampson, Paula R Williamson, Martin J Wilby and Thomas Jaki in Statistical Methods in Medical Research</p

    Monitoring overall survival in pivotal trials in indolent cancers

    Full text link
    Indolent cancers are characterized by long overall survival (OS) times. Therefore, powering a clinical trial to provide definitive assessment of the effects of an experimental intervention on OS in a reasonable timeframe is generally infeasible. Instead, the primary outcome in many pivotal trials is an intermediate clinical response such as progression-free survival (PFS). In several recently reported pivotal trials of interventions for indolent cancers that yielded promising results on an intermediate outcome, however, more mature data or post-approval trials showed concerning OS trends. These problematic results have prompted a keen interest in quantitative approaches for monitoring OS that can support regulatory decision-making related to the risk of an unacceptably large detrimental effect on OS. For example, the US Food and Drug Administration, the American Association for Cancer Research, and the American Statistical Association recently organized a one-day multi-stakeholder workshop entitled 'Overall Survival in Oncology Clinical Trials'. In this paper, we propose OS monitoring guidelines tailored for the setting of indolent cancers. Our pragmatic approach is modeled, in part, on the monitoring guidelines the FDA has used in cardiovascular safety trials conducted in Type 2 Diabetes Mellitus. We illustrate proposals through application to several examples informed by actual case studies.Comment: 13 pages, 5 table

    Choosing the target difference ('effect size') for a randomised controlled trial - DELTA(2) guidance protocol

    Get PDF
    BACKGROUND: A key step in the design of a randomised controlled trial (RCT) is the estimation of the number of participants needed. By far the most common approach is to specify a target difference and then estimate the corresponding sample size; this sample size is chosen to provide reassurance that the trial will have high statistical power to detect such a difference between the randomised groups (at the planned statistical significance level). The sample size has many implications for the conduct of the study, as well as carrying scientific and ethical aspects to its choice. Despite the critical role of the target difference for the primary outcome in the design of an RCT, the manner in which it is determined has received little attention. This article reports the protocol of the Difference ELicitation in TriAls (DELTA(2)) project, which will produce guidance on the specification and reporting of the target difference for the primary outcome in a sample size calculation for RCTs. METHODS/DESIGN: The DELTA(2) project has five components: systematic literature reviews of recent methodological developments (stage 1) and existing funder guidance (stage 2); a Delphi study (stage 3); a 2-day consensus meeting bringing together researchers, funders and patient representatives, as well as one-off engagement sessions at relevant stakeholder meetings (stage 4); and the preparation and dissemination of a guidance document (stage 5). DISCUSSION: Specification of the target difference for the primary outcome is a key component of the design of an RCT. There is a need for better guidance for researchers and funders regarding specification and reporting of this aspect of trial design. The aim of this project is to produce consensus based guidance for researchers and funders

    A phase I trial of the γ-secretase inhibitor MK-0752 in combination with gemcitabine in patients with pancreatic ductal adenocarcinoma.

    Get PDF
    BACKGROUND: The Notch pathway is frequently activated in cancer. Pathway inhibition by γ-secretase inhibitors has been shown to be effective in pre-clinical models of pancreatic cancer, in combination with gemcitabine. METHODS: A multi-centre, non-randomised Bayesian adaptive design study of MK-0752, administered per os weekly, in combination with gemcitabine administered intravenously on days 1, 8 and 15 (28 day cycle) at 800 or 1000 mg m-2, was performed to determine the safety of combination treatment and the recommended phase 2 dose (RP2D). Secondary and tertiary objectives included tumour response, plasma and tumour MK-0752 concentration, and inhibition of the Notch pathway in hair follicles and tumour. RESULTS: Overall, 44 eligible patients (performance status 0 or 1 with adequate organ function) received gemcitabine and MK-0752 as first or second line treatment for pancreatic cancer. RP2Ds of MK-0752 and gemcitabine as single agents could be combined safely. The Bayesian algorithm allowed further dose escalation, but pharmacokinetic analysis showed no increase in MK-0752 AUC (area under the curve) beyond 1800 mg once weekly. Tumour response evaluation was available in 19 patients; 13 achieved stable disease and 1 patient achieved a confirmed partial response. CONCLUSIONS: Gemcitabine and a γ-secretase inhibitor (MK-0752) can be combined at their full, single-agent RP2Ds

    Practical help for specifying the target difference in sample size calculations for RCTs: the DELTA2 five-stage study, including a workshop

    Get PDF
    BACKGROUND: The randomised controlled trial is widely considered to be the gold standard study for comparing the effectiveness of health interventions. Central to its design is a calculation of the number of participants needed (the sample size) for the trial. The sample size is typically calculated by specifying the magnitude of the difference in the primary outcome between the intervention effects for the population of interest. This difference is called the 'target difference' and should be appropriate for the principal estimand of interest and determined by the primary aim of the study. The target difference between treatments should be considered realistic and/or important by one or more key stakeholder groups. OBJECTIVE: The objective of the report is to provide practical help on the choice of target difference used in the sample size calculation for a randomised controlled trial for researchers and funder representatives. METHODS: The Difference ELicitation in TriAls2 (DELTA2) recommendations and advice were developed through a five-stage process, which included two literature reviews of existing funder guidance and recent methodological literature; a Delphi process to engage with a wider group of stakeholders; a 2-day workshop; and finalising the core document. RESULTS: Advice is provided for definitive trials (Phase III/IV studies). Methods for choosing the target difference are reviewed. To aid those new to the topic, and to encourage better practice, 10 recommendations are made regarding choosing the target difference and undertaking a sample size calculation. Recommended reporting items for trial proposal, protocols and results papers under the conventional approach are also provided. Case studies reflecting different trial designs and covering different conditions are provided. Alternative trial designs and methods for choosing the sample size are also briefly considered. CONCLUSIONS: Choosing an appropriate sample size is crucial if a study is to inform clinical practice. The number of patients recruited into the trial needs to be sufficient to answer the objectives; however, the number should not be higher than necessary to avoid unnecessary burden on patients and wasting precious resources. The choice of the target difference is a key part of this process under the conventional approach to sample size calculations. This document provides advice and recommendations to improve practice and reporting regarding this aspect of trial design. Future work could extend the work to address other less common approaches to the sample size calculations, particularly in terms of appropriate reporting items. FUNDING: Funded by the Medical Research Council (MRC) UK and the National Institute for Health Research as part of the MRC-National Institute for Health Research Methodology Research programme

    Elicitation of expert prior opinion: application to the MYPAN trial in childhood polyarteritis nodosa.

    Get PDF
    OBJECTIVES: Definitive sample sizes for clinical trials in rare diseases are usually infeasible. Bayesian methodology can be used to maximise what is learnt from clinical trials in these circumstances. We elicited expert prior opinion for a future Bayesian randomised controlled trial for a rare inflammatory paediatric disease, polyarteritis nodosa (MYPAN, Mycophenolate mofetil for polyarteritis nodosa). METHODS: A Bayesian prior elicitation meeting was convened. Opinion was sought on the probability that a patient in the MYPAN trial treated with cyclophosphamide would achieve disease remission within 6-months, and on the relative efficacies of mycophenolate mofetil and cyclophosphamide. Expert opinion was combined with previously unseen data from a recently completed randomised controlled trial in ANCA associated vasculitis. RESULTS: A pan-European group of fifteen experts participated in the elicitation meeting. Consensus expert prior opinion was that the most likely rates of disease remission within 6 months on cyclophosphamide or mycophenolate mofetil were 74% and 71%, respectively. This prior opinion will now be taken forward and will be modified to formulate a Bayesian posterior opinion once the MYPAN trial data from 40 patients randomised 1:1 to either CYC or MMF become available. CONCLUSIONS: We suggest that the methodological template we propose could be applied to trial design for other rare diseases
    corecore