210 research outputs found
Turbulence structure and interaction with steep breaking waves
Large-eddy and interface simulation using an interface tracking-based multi-fluid flow solver is conducted to investigate the breaking of steep water waves on a beach of constant bed slope. The present investigation focuses mainly on the ‘weak plunger' breaking wave type and provides a detailed analysis of the two-way interaction between the mean fluid flow and the sub-modal motions, encompassing wave dynamics and turbulence. The flow is analysed from two points of views: mean to sub-modal exchange, and wave to turbulence interaction within the sub-modal range. Wave growth and propagation are due to energy transfer from the mean flow to the waves, and transport of mean momentum by these waves. The vigorous downwelling-upwelling patterns developing at the head and tail of each breaker are shown to generate both negative- and positive-signed energy exchange contributions in the thin sublayer underneath the water surface. The details of these exchange mechanisms are thoroughly discussed in this paper, together with the interplay between three-dimensional small-scale breaking associated with turbulence and the dominant two-dimensional wave motion. A conditional zonal analysis is proposed for the first time to understand the transient mechanisms of turbulent kinetic energy production, decay, diffusion and transport and their dependence and/or impact on surface wrinkling over the entire breaking process. The simulations provide a thorough picture of air-liquid coherent structures that develop over the breaking process, and link them to the transient mechanisms responsible for their local incidenc
Tensile and nanoindentation tests analysis of Ti6Al4V alloy manufactured by laser powder bed fusion
Additive manufacturing (AM) technologies are widely used in the fabrication of topologically complex components with thin-walled features, such as lattice structures. In this context, Laser Powder Bed Fusion (L-PBF) is one of the most commonly used AM technologies for producing such components. In order to further expand and justify the application of these components in operation and to model their mechanical behavior, it is necessary to know the mechanical properties of the matrix material from which they are formed. Therefore, there is currently a high interest in studying the behavior of these materials when subjected to monotonic or cyclic loading. However, determining the mechanical properties of the matrix material of thin-walled structures using tensile tests is challenging on the required subsize specimens. As a micro- or even nano-scale technology, nanoindentation can be used to probe a small volume of specimen, thus allowing the mechanical properties such as Young modulus, of thin-walled structures to be determined. In this work, Young's modulus of L-PBF Ti6Al4V alloy produced using different laser power and scanning speed combinations, has been determined on nano and macro scale. By comparing obtained results at both scales, it is evident that Young's modulus values determined at nano scale are higher and more scattered when compared to results determined at macro scale. Furthermore, this study implies that a wider range or a higher number of L-PBF process parameters should be considered to model it's influence on Young's modulus with higher accuracy
Process parameters optimization in fused deposition modeling of polyether ether ketone
Fused Deposition Modeling is increasingly used for producing high-performing, creepresistant, biocompatible, fireproof, highly-stable parts from polyether ether ketone. However, the knowledge on this process is still poor and fragmented, and the lack of relevant data inhibits many applications. In this paper, the effects of the nozzle temperature, nozzle speed and layer thickness on the properties of PEEK processed by Fused Deposition Modeling were investigated by performing indentation, tensile, Scanning Electron Microscope, Computer Tomography and Energy Dispersive X-ray Spectroscopy tests on as-built samples. The outgassing behavior was also analyzed, while the synchrotron radiation was used to characterize the structure of selected samples on a hitherto unexplored scale. The samples morphology was finally used to identify the optimal process window. The results provided new insights on the process and novel data enabling new applications
Molecular modeling of hair keratin/peptide complex : using MM-PBSA calculations to describe experimental binding results
Molecular dynamics simulations of a keratin/peptide complex have been conducted to predict the binding affinity of four different peptides toward human hair. Free energy calculations on the peptides' interaction with the keratin model demonstrated that electrostatic interactions are believed to be the main driving force stabilizing the complex. The molecular mechanics–Poisson-Boltzmann surface area methodology used for the free energy calculations demonstrated that the dielectric constant in the protein's interior plays a major role in the free energy calculations, and the only way to obtain accordance between the free energy calculations and the experimental binding results was to use the average dielectric constant.Grant sponsor: Contract Research Program "Compromisso com a Ciencia''; Grant number: C2008-UMINHO-CQ-03; Grant sponsor: FCT "Fundacao para a Ciencia e Tecnologia'' (PhD); Grant number: SFRH/BD/38363/200
- …