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INTRODUCTION

The interaction of small peptides with protein matrices can be an important factor

in the development of new added value products with applications in medicine and
cosmetics. The use of peptides in cosmetic formulations to regenerate skin and hair

keratin properties is well established. In this work, we report the application of four

different peptides, based on the amino-acid sequence of pulmonary-associated surfac-

tant protein D (SP-D) from mammalian lungs, to evaluate their binding affinity toward

hair.

SP-D is a collagenous, carbohydrate-binding glycoprotein that is synthesized and

secreted into the air space of the lung by alveolar type II cells and also by noncili-

ated bronchiolar epithelial cells.1 The a-helical neck region of this protein has been
reported to be essential for the binding of the protein carbohydrate recognition do-

main to lipids2 and to hair fibers and moreover for recovering its mechanical prop-

erties.3 Electrostatic interactions are believed to play a significant role in hair

adsorption mechanisms. However, the presence of a hydrophobic lipid layer hinders

the diffusion of compounds into hair.4 The ability of SP-D to interact with these

lipids is thought to assist their penetration onto hair fibers. For that reason, smaller

fragments of SP-D protein were applied on normal and bleached hair, because the

bleaching process is known to destroy the hair lipid layer. A formulation that joins
the ability to penetrate deep in the fiber (small size) with the ability to interact

with lipids present in hair was sought.

To obtain information about the binding affinity of these peptides toward hair, mo-

lecular dynamics (MD) simulations were conducted. MD simulations on human kera-

tins, both from hair and epithelium cells, have been extensively performed to study the

structure of this complex fibrous protein. There is, however, a drawback in the study of

keratin fibers by computational methods.5–9 There are no crystallographic structures of

keratins, so it is necessary to build a suitable model to study keratin interaction. There
are some different approaches for the construction of these models. Akkermans and

Warren5 did some structural studies using the leucine zipper domain in the GCN4

protein because this zipper domain has a reasonable sequence homology with hair kera-
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ABSTRACT

Molecular dynamics simula-

tions of a keratin/peptide

complex have been con-

ducted to predict the bind-

ing affinity of four different

peptides toward human hair.

Free energy calculations on

the peptides’ interaction

with the keratin model dem-

onstrated that electrostatic

interactions are believed to

be the main driving force

stabilizing the complex. The

molecular mechanics–Pois-

son-Boltzmann surface area

methodology used for the

free energy calculations dem-

onstrated that the dielectric

constant in the protein’s in-

terior plays a major role in

the free energy calculations,

and the only way to obtain

accordance between the free

energy calculations and the

experimental binding results

was to use the average

dielectric constant.
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tins. This sequence homology was used by others6–8 to

build keratin models by homology alignment with the

structure of GCN4 leucine zipper. Buehler and co-

workers10–12 had reported an extensive work on the

characterization of vimentin intermediate filaments, and

Smith and Parry9 reported some work using hair keratin

structures build by homology alignment with the crystal

structures of vimentin.
Herein, we report, for the first time, the MD simula-

tions of the interaction between human hair keratin and

small peptides. The keratin model was constructed by

homology modeling with the crystal structure of vimen-

tin, and corresponds to the 1A segment of the dimer

formed by keratin 32 and keratin 84. Vimentin and kera-

tin belongs to the same family of proteins, the intermedi-

ate filaments. It is known that all intermediate filaments
have coiled-coil structures, very similar to each other,

and they all have similar amino acids sequences. Further-

more, there were recent developments in the X-ray reso-

lution of the structure of vimentin toward its full knowl-

edge,13 making it a good choice as a model in the

homology alignments studies.

MATERIALS AND METHODS

Hair

Natural European blond human hair samples were

provided by International Hair Importers & Products

(New York). Before use, the hair fibers tresses (0.1 g

each) were washed with a commercial shampoo. These

hair tresses were used with two different pretreatments.

Virgin hair corresponds to hair without any chemical

pretreatment. Chemically damaged hair (83B) corre-

sponds to hair subjected to eight cycles of bleaching
(83B). In each bleaching cycle, the hair tresses was

treated with 10% H2O2 (v/v) in the presence of 0.1M

Na2CO3/NaHCO3 pH 9.0 buffer at 508C for 1 h.

Engineered peptides

The peptides used in this study were synthesized by

JPT Peptide Technologies GmbH (Berlin, Germany) and

were covalently linked by their N-terminal to a fluores-

cent dye, (5(6)-carboxytetramethyl-rhodamine, succini-

midyl ester), that is, 5(6)-TAMRA, with spectral proper-

ties of kex 5 544 nm and kem 5 572 nm, to facilitate the

analysis of peptide penetration.
The peptides were dissolved in 0.05M Phosphate buffer

solution, pH 7.5, containing 10% ethanol, 1.5% propyl-

ene glycol, and 0.5% benzyl alcohol, with a final concen-

tration of 0.6 mM in terms of peptide content. The pep-

tide characteristics are shown in Figure 1. The sequence

of the peptides is described by one letter code which rep-

resents one of known amino acid residues.

Hair treatments with peptides

As mentioned above, the peptides were dissolved in an

aqueous solution containing a mixture of alcohols. This

mixture of solvents was used not only to promote pep-

tide solubility but also because it is known that this sol-
vent is able to ease the interaction of peptides with hair

fibers by promoting hair swelling14 and exposing the

hair shaft to the treatment solution. The hair samples

were treated with 3.0 mL of 0.05M phosphate buffer so-

lution, pH 7.5, containing 600 lL of peptide solution

(final concentration 120 lM), for 1 h at 378C and 100

rpm. Subsequently, all the samples were thoroughly

rinsed with tap water and washed with a commercial
shampoo.

Color variation

The color variation was measured directly from the

hair-peptide solution by monitoring absorbance at 555

nm (corresponding to maximum absorption of the treat-

ment solution) before and after the treatment. As the
color of the solution is due solely to the presence of

unbound peptide, the quantity of bound peptide that has

penetrated the hair is related to the difference in absorb-

ance (Abs). The percentage of color variation was calcu-

lated using Eq. (1).

Color Variationð%Þ ¼
Absinitial $ Absfinal

Absinitial
3100 ð1Þ

Fluorescence microscopy

Transversal cuts of the hair fiber samples were analyzed

by fluorescence microscopy. Hair fibers were embedded

into an epoxy resin, and 15-lm transversal cuts of the
fibers were prepared using a microtome (Microtome

Leitz). Fiber cross sections were analyzed using a LEICA

DM 5000B fluorescence microscope (Leica), at a magnifi-

cation of 340. All fluorescence microscopy images were

recorded using identical filter, exposure, brightness,

and gain settings. The most representative images were

chosen.

Figure 1

Peptides’ nomenclature and amino acid sequence, showing side-chain
charges at pH 5 7. All peptides are attached to a fluorescent dye
TAMRA at N terminus and to NH2 at C terminus.
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Peptide setup

The peptide used was chemically synthesized, and it

represents a part of the human SP-D protein neck do-

main. The lung surfactant proteins are characterized by a

trimeric structure, and the neck domain is necessary for

the assembly of the trimer. In contrast to the other sur-

factant proteins that have three heptad repeats in the

neck domain, SP-D have four and the extra heptad motif

makes this neck domain sufficient for the trimeriza-
tion.15,16 The SPD-T peptide used corresponds to only

two heptads, which is not sufficient for assure the trime-

rization of the peptides in solution, making it very

unlikely for the peptide to present this type of structure.

Even with the assumption that this peptide will not pres-

ent the coiled-coil structure, its conformation was

unknown.

Starting from an X-ray structure of SP-D (PDB code
1pw917), the segments corresponding to SPD-T peptide

(residues 215-235) were selected, and one trimeric struc-

ture of SPD-T was obtained. Using the same conditions

reported below to the simulations of the keratin/SPD

complexes, it was observed that this trimeric structure is

not stable in water, in pure ethanol, or in the solvent

mixture used in the hair treatments. The next step was

the evaluation of the structures of SPD-T and SPD 1-3,
starting from the corresponding monomeric structures

extracted from 1pw9, using the solvent mixture used for

the keratin/SPD complexes. This procedure was used not

only to evaluate the behavior of the structures over time

but also to obtain fully relaxed structures of the four

peptides to be used as starting points in the studies of

complex formation. As expected, peptides SPD 1-3 do

not have any particular structure after 100 ns of simula-
tion time, and the same was observed for SPD-T.

Keratin setup

The keratin fibers are not homogeneous in their com-

position, so any representation of keratin must be con-

sidered as a model. Keratin is known to form a-helices,
which aggregate to form filaments. The basic structural

unit of these filaments is the keratin heterodimer, con-

sisting in one Type I keratin and the corresponding Type

II keratin, forming the a-helical rod domain. Each of

these heterodimers are divided into four major segments

(1A, 1B, 2A, and 2B).6

There are no X-ray structures available for the keratin

structure at the atomic level. The only option to simulate
keratin is to derive its 3D structures by homology model-

ing. This is a valid approach because keratin belongs to a

very well-known family of proteins, the intermediate fila-

ments, all having a similar structure. The homology

modeling studies were made using the SWISS-MODEL

tool.18–20 It was possible to obtain homology alignments

for all the sequences from hair keratin, both from Type I

and Type II. The structures chosen for this work were

the ones having the best alignment against 1A segment,

namely, keratin-32 (UniProtKB accession Q14532) and

keratin-84 (UniProtKB accession Q9NSB2). The results

from the SWISS-MODEL showed that the alignment for

both structures was performed with vimentin (PDB code

3g1eA21), with 44% of sequence identity for keratin 32

and 54% for keratin-84. This structure (3g1eA) corre-
sponds to chain A of fragment 1A of vimentin.

The dimeric structure of keratin was obtained by rigid

docking approach using AutoDockVina22 from the struc-

tures for both keratin-32 (K32) and keratin-84 (K84).

K32 was used as the receptor, considered as if it is fully

rigid. The ligand was K84 with rigid backbone only. Each

of these proteins has a volume of roughly 56 3 15 3 15

Å. For the docking calculations, a box of size 60 3 45 3

45 Å was used, centered at the geometric center of K32

structure. In this way, the K84 structure could explore all

the positional space surrounding K32. Three independent

calculations were performed. Two of them used the

standard configurations of AutodockVina and in the

other one, the exhaustiveness value was changed to 80

(standard is 8), and the program was allowed to generate

27 binding modes (standard is 9). Keratin dimers present
in hair are parallel (N-terminus and C-terminus align

with each other), so any docking result showing antipar-

allel association were discarded, resulting in four possible

interaction patterns (see Fig. 2). The orientation that rep-

resents the largest number of hits (Pattern 1) was chosen,

and from that orientation, the structure that is energeti-

cally more favorable.

Figure 2

Results from the docking calculations, showing K32 as the central
structure and the results from different calculations. [Color figure can
be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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The choice of the dimer to use as model could be crit-

ical, but it was not possible to find any information

about the presence of the dimers in human hair. What is

known is that all combinations of keratins Type I and II

are possible and are present in human keratin. K32 and

K84 were chosen because, as mentioned before, these are

the monomers that gave the best homology alignment.

Simulations

The simulations were performed with the GROMACS

4.0.723 package using the GROMOS 53A6 force field.24

The keratin dimer obtained from the docking calcula-

tions was used without further energy minimization. The

peptides were added to the simulation box in a random

way. Before solvation benzyl alcohol and propylene glycol

molecules were added to the simulation box, in a ran-
dom way, such that the final concentration of these alco-

hols match those used in the experimental essays. The

system was solvated using a pre-equilibrated box of water

containing 10% of ethanol. The system size was chosen

according to the minimum image convention taking into

account a cutoff of 1.4 nm. The bonds lengths of the

proteins were constrained with LINCS25 and those for

water with SETTLE.26 Nonbonded interactions were cal-
culated using a twin-range method, with short- and

long-range cutoffs of 0.8 and 1.4 nm, respectively. Neigh-

bor searching was carried out up to 1.4 nm and updated

every five steps. A time step of integration of 2 fs was

used. A reaction field correction for the electrostatic

interactions was applied using a dielectric constant of

54.27 The single point charge model28 was used for

water molecules. The initial systems were energy mini-
mized for 2000 steps using the steepest descent method,

with all heavy atoms harmonically restrained using a

force constant of 103 kJ/mol nm2. The systems were ini-

tialized in the canonical ensemble (NVT) for 50 ns, with

all heavy atoms harmonically restrained using a force

constant of 103 kJ/mol nm2. The simulation was then

continued for 50 ns in the isothermal–isobaric ensemble

(NPT), with the heavy atoms harmonically restrained
with the same force constant. Finally, for allowing the

equilibration of the system properties, the simulations

were further extended in the NPT ensemble with posi-

tional restrains applied to the Ca atoms. Pressure control

was implemented using the Berendsen barostat,29 with a

reference pressure of 1 bar, 0.5 ps of relaxation time, and

isothermal compressibility of 4.5 3 1025 bar21. Temper-

ature control was set using the V-rescale29,30 thermostat
at 300 K. The keratin and the peptide were grouped in

the same heat bath and solvent molecules in a separated

heat bath, with temperatures coupling constants of 0.025

ps in the first two initialization steps and with 0.1 ps for

the rest of the simulations. Five replica simulations of 75

ns in length were carried out using different initial veloc-

ities taken from a Maxwell–Boltzman distribution at 300

K, leading to a total simulation time of 375 ns for each

system. For the evaluation of the contact surface area

and calculations of the entropic contribution for the free

energy of binding, one simulation for each system was

extended to a total of 100 ns. For each system, only the

replica having the highest contact surface area value was

chosen.

Free energy calculations

For the free energy calculations, only end-point meth-
ods were considered, mainly because the convergence of

pathway methods can be difficult. Concerning only end-

point approaches, two different methods were considered:

the linear interaction energy method and the molecular

mechanics–Poisson-Boltzmann surface area (MM-PBSA)

method. A full description of these different methods

was described in detail elsewhere.31 MM-PBSA methods

uses MD simulations of the free ligand, free protein, and
their complex as a basis for calculating the average

potential and solvation energies in Eq. (2),

G ¼ GMM þ Gsolv þ Gnp $ TS ð2Þ

and the free energy on binding is calculated as repre-
sented in Eq. (3).

DGbinding ¼ Gcomplex $ ðGprotein þ GligandÞ ð3Þ

Taking into account the previous equations, the free

energy of binding was calculated using Eq. (4)

DGbinding ¼ DEMM þ DGsolv þ DGnp $ TDS ð4Þ

in which each term is defined as the difference between

the value for the complex and the sum of the values for

both protein and ligand.

The ‘‘MM’’ subscript corresponds to the internal

energy of the protein or ligand (bond, angle, dihedral,

and the electrostatic and van der Waals interactions), the
‘‘solv’’ subscript refers to the free energy of polar solva-

tion, and the ‘‘np’’ subscript the free energy of nonpolar

solvation. S is the entropic contribution for the free

energy and T is the temperature.

Although early applications of MM-PBSA appeared

promising, apparently it is difficult to obtain convergence

for the energy averages.31 Convergence has been acceler-

ated by a single-trajectory approach,32,33 in which only
one MD simulation of the protein-ligand complex is car-

ried out. Conformations of the nominally free ligand are

then derived simply by deleting the protein from the

resulting snapshots, and likewise for the ‘‘free’’ protein.

Lee and Olson33 had reported a comparative analysis of

different methods to calculate protein–ligand binding af-

finity, and for their particular system, they found that

N.G. Azoia et al.
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the least reliable results were those obtained by methods

that simulate both bounded and unbounded states.

Taking all of these into account the free energies of
binding was determined with the MM-PBSA approach,

using the MD simulation of SPD-Keratin complexes only.

Only the last 50 ns of the simulation were used, and 101

frames were extracted from the respective trajectory.

DEMM and DGsolv were calculated using these 101 frames.

The electrostatic potential and solvation free energy

(DGsolv) calculations were carried out using the Poisson-

Boltzmann method as implemented in the MEAD pack-
age version 2.2.8.34 First, the dielectric constant within

the molecules was calculated from the total dipole and

its fluctuations, using independent 100-ns MD simula-

tions of each component. This was made in an effort to

better relate the calculation of the free energies with the

experimental values. The results of the dielectric constant

were 2 for the keratin, the complexes and for peptides

SPD-1 and SPD-2. For peptides SPD-T and SPD-3, the
values of 3 and 7 were obtained, respectively. These cal-

culated values were used for determine the solvation-free

energies. The dielectric constant for the solvent was con-

sidered as 80.

The nonpolar solvation energy was determined as

described elsewhere35 from the solvent accessible surface

area (SASA), calculated with a probe radius of 1.4 Å, and

g constant of 5 (cal/mol)/Å2 [Eq. (5)].

DGnp ¼ g SASA ð5Þ

The entropy was computed based on the quasiharmonic
approach, using Schlitter’s formula. Schlitter36 introduced

a very elegant formula to calculate absolute entropies

from MD trajectories using the covariance matrix of

atom-positional fluctuation. Before Schlitter’s work, Levy

et al.37 had introduced a method based on the quasihar-

monic approximation which also connects the absolute

entropy of the atoms to the covariance matrix, using

internal coordinates. Latter, Andricioaei and Karplus38

showed that Levy’s method can be extended to estimate

the total entropy using the covariance matrix with Carte-
sian coordinates. Carlsson and Åqvist39 had proved that

Schlitter’s formula, and the quasiharmonic analysis do not

differ much in the entropy values. In this work, a method-

ology reported elsewhere38–40 was used to calculate the

entropic contribution, using Schlitter’s formula, but

assuming that the fluctuations in the motions of the sys-

tem can be described by a Gaussian probability distribu-

tion (quasiharmonic approximation). This contribution
was determined using the extended simulations (100 ns),

with the entropy calculated for the last 90 ns.

RESULTS

Penetration of compounds into the hair is very impor-

tant when new approaches for hair care applications are

considered. However, the presence of the covalent isopep-

tide crosslinks as well as the covalently attached lipids

(predominantly 18-methyleicosanoic acid) on the hair

surface constitute a diffusion barrier to chemicals and
other treatment agents, thus impairing penetration.41,42

Being linked to the proteinaceous epicuticle via thioester

linkage,4 this fatty acid forms a layer that can be

removed by alkaline oxidative process, such as those used

in the bleaching process for the hair samples. Because of

the damage imparted by the bleaching process, the

alpha-keratin present in the cortex of hair is thought to

be exposed. It is well reported that the bleaching process
modifies hair properties along the cuticle.43–45

The peptides used in this work were developed based

on the pulmonary-associated surfactant protein D (SP-D)

from mammals’ lungs amino acid residue sequence46,47

(Fig. 1). A longer peptide (SPD-T) and shorter fragments

of it (SPD-1, SPD-2, and SPD-3) were applied on human

hair to study their binding affinity and ability to restore

Figure 3

Hair cross sections of fibers without treatment (control) and treated with SPD peptides in washed hair and eight times bleached hair. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Molecular Modeling of Hair Keratin Complex
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damaged parts. This assumption came from the fact that

surfactant proteins from mammals’ lungs are able to

interact with lipids. Fragments or models representing

those proteins could, therefore, overcome the lipidic bar-

rier present on hair, increasing the penetration of pep-
tides inside the hair.3 This fact was indeed proved by the

visualization of peptide at cuticle level in the washed

hair, which possesses an intact lipid barrier (Fig. 3).

These peptides have in their structure a covalently

attached fluorescent dye that facilitates the analysis of

its incorporation. Fluorescence micrographs of hair

fibers treated with SP-D-based peptide, at the same con-

ditions of brightness, exposure time, gain, and intensity,
show the affinity of peptides toward hair (Fig. 3).

Chemically damaged hair was shown to possess higher

quantity of peptide at its surface. The damage imparted

by the chemical bleaching process may constitute a

pathway for the penetration of small peptides. In fact,

previous studies indicate that the adsorption onto hair

is increased both when low molecular weight com-

pounds are applied and when hair is chemically dam-
aged.48

SPD-T and SPD-3 attach at higher yield than SPD-1

and SPD-2, in both virgin and damaged hair (Fig. 3).

The difference in chemistry should be the reason for this

behavior. SPD-3 is a small peptide, which amino acid

residue sequence may be responsible for the high affinity

of SPD-T. The chemistry of SPD-3 amino acid sequence

(Fig. 1) may facilitate the adsorption on human hair, due
to the presence of the positively charged lysines, that

links to the negatively charged hair (pI 5 3.7).49 These

observations were confirmed by the color variation meas-

urements, a method that determines the initial affinity of

peptide toward hair while it is being applied. SPD-T and

SPD-3 shows high affinity toward hair, while SPD-1 and

SPD-2 poorly attach to it (Fig. 4).

Molecular modeling of the keratin–SPD

complexes

To understand the molecular mechanism of the inter-

action between SPD’s and the hair fibers, molecular

modeling studies were conducted using several methodol-

ogies. The keratin structure was modeled using rigid

docking methods.22 The keratin–SPD structural com-

plexes were obtained using molecular dynamics (MD)
simulations,23,24 with the peptide structures placed ran-

domly near the keratin structure, to provide greater phys-

ical realism of the interaction between them. Further-

more, the contact surface and binding free energy of each

complex was estimated using the MM-PBSA method.

Figure 4

Uptake of SPD peptides on chemically damaged hair, measured by color
variation method in bath treatment solution at 555 nm.

Figure 5

Contact surface area for peptide–keratin complexes. The values are
taken from the chosen replica for each peptide.

N.G. Azoia et al.
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Analysis of the simulations

Contact surface area

The objective of the simulations was the evaluation of

the interaction between the peptides and the keratin

structure, so one of the first analysis to be perform was

the surface contact area.50 In this way, it is possible to

evaluate, not only the interaction between the molecules

but also the stability and convergence of the simulations.
Figure 5 shows the contact surface between keratin

dimer (K32 and K84) and the four SPD peptides. For the

analysis of the contact surface area, the simulations were

extended for an extra 25 ns, to check the stability and

convergence of the complex. For each system, it is clear

that there are no significant difference between the values

at 75 ns and the same values at 100 ns. It is also possible

to observe that the behavior of each system is very simi-
lar. SPD-T peptide is larger than any other, but the val-

ues obtained for the contact surface area are close to the

values obtained to the other peptides. The differences in

these values can be easily explained looking to the struc-

tures representing the configuration of the complexes af-

ter 75 ns, shown in Figure 6. In contrast to peptides

SDP1-3, SDP-T is not fully extended. The configuration

of SPD-T minimizes the surface of the peptide, having
the same effect on the surface contact area between SPD-

T and the keratin.

Free energy calculations

The results from these calculations are shown in Table

I. The dielectric value used for calculating the free energy

of polar solvation is a key factor for the accuracy of the

MM/PBSA methodology. There are many published

works in this field,51–55 but there is no universal

approach about the value to be used. In free energy cal-

culations, the values used for the dielectric constant (ep)

are usually 1, 2, or 4. If the objective is to determine pKa

values for the side-chain residues of proteins, then higher

values are used, usually between 10 and 20.56,57 Consid-

ering these approaches, the solvation free energy (DGsolv)
was first determined using ep equal to 2, 4, and 10. These

three values were used to check the differences on the

Figure 6

Representation of the peptide–keratin complex after 75 ns.

Table I
Free Energy of Binding

DEMM DGsolv DGnp TDS DGbinding

ep 5 3 for SPD-T, ep 5 7 for SPD-3, and ep 5 2 for all the other

species

SPD-T 2654 236 217 18 2453

SPD-1 2349 508 212 31 116

SPD-2 2280 342 29 46 7

SPD-3 2603 420 212 36 2231

ep 5 2 for all the species

SPD-T 2389 444 217 18 20

SPD-1 2349 508 212 31 116

SPD-2 2280 342 29 46 7

SPD-3 2493 798 212 36 257

ep 5 4 for all the species

SPD-T 2274 367 217 18 58

SPD-1 2225 439 212 31 171

SPD-2 2174 282 29 46 53

SPD-3 2307 747 212 36 392

ep 5 10 for all the species

SPD-T 2204 268 217 18 29

SPD-1 2151 327 212 31 133

SPD-2 2110 196 29 46 31

SPD-3 2195 629 212 36 386

All values are indicated in kJ/mol.

Molecular Modeling of Hair Keratin Complex
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final results. The results of these calculations are shown

in Table I. What became clear is that this approach is not

suitable to describe these keratin–peptide systems. Posi-

tive values for the binding free energy do not describe

the results from MD simulations or the experimental

results.

To better describe these systems, the average dielectric

constant (!e) for the molecules, calculated from the total
dipole and its fluctuations, was used. In other words, !e

was used for calculating the polar contribution of the

free energy of solvation, instead of ep. This is not a very

common approach. In fact it is normally stated that ep is

completely different from !e,58 but what was observed in

this work was that !e gave a better description of the

interaction of keratin with these small peptides, two of

them charged. The effect of these charged residues in a
small peptide will be much more pronounced than in

large globular proteins. Lund59 has discussed and used a

protein model, for the calculation of titration curves, in

which the protein is treated as having to dielectrics: one

low dielectric core and a high dielectric outer shell where

the charged residues are located. In this outer shell, the

dielectric was considered to be as high as the solvent

dielectric. In this case, it does not seem to be necessary
to use such dielectric values, because what is required are

free energies and not titration curves, but it still make

sense to use different dielectrics to describe a small

charged peptide and a bigger protein. The results

obtained show that for proteins, more specifically for the

keratin dimer and the keratin–peptide complexes, and

for small uncharged peptides, !e is similar to ep. For

charged peptides, the value is higher, describing the fact
that the solvent is able to solvate the charged residues,

thus increasing the dielectric value in the protein’s inte-

rior.

In Table I, it is possible to observe the importance of

each component used in the free energy calculations. The

interactions come essentially from the mechanical energy

component. The polar solvation energy component is

always unfavorable, and the nonpolar and entropic con-
tributions are negligible if compared with DGsolv.

The positive change in the entropy was not fully

expected. The convergence of these values was evaluated

calculating the entropy using different time intervals,

ranging from only the last 10 ns to the full 100-ns trajec-

tory. A good convergence was found.

CONCLUSIONS

SPD-T and SPD-3 have shown more affinity toward

hair that SPD-1 and SPD-2. These differences could

result from the fact that both SPD-T and SPD-3 possess

a positive net charge, while SPD-1 and SPD-2 do not

have neither net nor local charges. SPD-1, SPD-2, and

SPD-3 represents each one a different segment of SPD-T,

and all together represent the totality of SPD-T sequence.

It is possible to conclude that the segment responsible

for the affinity toward hair keratin, it is the segment rep-

resented by SPD-3. This conclusion is not strange, if the

charge distribution in each segment is considered.

The charged distribution in these relatively small pep-

tides is also important when considering the dielectric

constant in the proteins’ interior: the choice of the best
value for ep was a key factor to obtain a good description

of our system. It was not possible to get good results

while using the standard values for ep, but the use of !e

in the calculation of the solvation free energy lead to a

good agreement between free energy values and the ex-

perimental results.
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