135 research outputs found

    Molecular identification for epigallocatechin-3-gallate-mediated antioxidant intervention on the H2O2-induced oxidative stress in H9c2 rat cardiomyoblasts

    Get PDF
    Epigallocatechin-3-gallate (EGCG) has been documented for its beneficial effects protecting oxidative stress to cardiac cells. Previously, we have shown the EGCG-mediated cardiac protection by attenuating reactive oxygen species and cytosolic Ca2+ in cardiac cells during oxidative stress and myocardial ischemia. Here, we aimed to seek a deeper elucidation of the molecular anti-oxidative capabilities of EGCG in an H2O2-induced oxidative stress model of myocardial ischemia injury using H9c2 rat cardiomyoblasts

    Promoter Polymorphism G-6A, which Modulates Angiotensinogen Gene Expression, Is Associated with Non-Familial Sick Sinus Syndrome

    Get PDF
    Background: It is well known that familial sick sinus syndrome (SSS) is caused by functional alterations of ion channels and gap junction. Limited information is available on the mechanism of age-related non-familial SSS. Although evidence shows a close link between arrhythmia and the renin-angiotensin system (RAS), it remains to be determined whether the RAS is involved in the pathogenesis of non-familial SSS. Methods: In this study, 113 patients with documented non-familial SSS and 125 controls were screened for angiotensinogen (AGT) and gap junction protein-connexin 40 (Cx40) promoter polymorphisms by gene sequencing, followed by an association study. A luciferase assay was used to determine the transcriptional activity of the promoter polymorphism. The interaction between nuclear factors and the promoter polymorphism was characterized by an electrophoretic mobility shift assay (EMSA). Results: Association study showed the Cx40 -44/+71 polymorphisms are not associated with non-familial SSS; however, it indicated that four polymorphic sites at positions -6, -20, -152, and -217 in the AGT promoter are linked to non-familial SSS. Compared to controls, SSS patients had a lower frequency of the G-6A AA genotype (OR 2.88, 95% CI 1.58–5.22, P = 0.001) and a higher frequency of the G allele at -6 position (OR 2.65, 95% CI 1.54–4.57, P = 0.0003). EMSA and luciferase assays confirmed that nucleotide G at position -6 modulates the binding affinity with nuclear factors and yields a lower transcriptional activity than nucleotide A (P,0.01). Conclusion: G-6A polymorphism, which modulates the transcriptional activity of the AGT promoter, may contribute to nonfamilial SSS susceptibility

    Epigallocatechin-3-gallate-mediated cardioprotection by Akt/GSK-3Ξ²/caveolin signalling in H9c2 rat cardiomyoblasts

    Get PDF
    Background: Epigallocatechin-3-gallate (EGCg) with its potent anti-oxidative capabilities is known for its beneficialeffects ameliorating oxidative injury to cardiac cells. Although studies have provided convincing evidence tosupport the cardioprotective effects of EGCg, it remains unclear whether EGCg affect trans-membrane signalling incardiac cells. Here, we have demonstrated the potential mechanism for cardioprotection of EGCg againstH2O2-induced oxidative stress in H9c2 cardiomyoblasts.Results: Exposing H9c2 cells to H2O2 suppressed cell viability and altered the expression of adherens and gapjunction proteins with increased levels of intracellular reactive oxygen species and cytosolic Ca2+. These detrimentaleffects were attenuated by pre-treating cells with EGCg for 30 min. EGCg also attenuated H2O2-mediated cell cyclearrest at the G1-S phase through the glycogen synthase kinase-3Ξ² (GSK-3Ξ²)/Ξ²-catenin/cyclin D1 signalling pathway.To determine how EGCg targets H9c2 cells, enhanced green fluorescence protein (EGFP) was ectopically expressedin these cells. EGFP-emission fluorescence spectroscopy revealed that EGCg induced dose-dependent fluorescencechanges in EGFP expressing cells, suggesting that EGCg signalling events might trigger proximity changes of EGFPexpressed in these cells.Proteomics studies showed that EGFP formed complexes with the 67 kD laminin receptor, caveolin-1 and -3,Ξ²-actin, myosin 9, vimentin in EGFP expressing cells. Using in vitro oxidative stress and in vivo myocardial ischemiamodels, we also demonstrated the involvement of caveolin in EGCg-mediated cardioprotection. In addition,EGCg-mediated caveolin-1 activation was found to be modulated by Akt/GSK-3Ξ² signalling in H2O2-induced H9c2cell injury.Conclusions: Our data suggest that caveolin serves as a membrane raft that may help mediate cardioprotectiveEGCg transmembrane signalling

    Genome-Wide Association Study of Treatment Refractory Schizophrenia in Han Chinese

    Get PDF
    We report the first genome-wide association study of a joint analysis using 795 Han Chinese individuals with treatment-refractory schizophrenia (TRS) and 806 controls. Three loci showed suggestive significant association with TRS were identified. These loci include: rs10218843 (Pβ€Š=β€Š3.04Γ—10βˆ’7) and rs11265461 (Pβ€Š=β€Š1.94Γ—10βˆ’7) are adjacent to signaling lymphocytic activation molecule family member 1 (SLAMF1); rs4699030 (Pβ€Š=β€Š1.94Γ—10βˆ’6) and rs230529 (Pβ€Š=β€Š1.74Γ—10βˆ’7) are located in the gene nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1); and rs13049286 (Pβ€Š=β€Š3.05Γ—10βˆ’5) and rs3827219 (Pβ€Š=β€Š1.66Γ—10βˆ’5) fall in receptor-interacting serine/threonine-protein kinase 4 (RIPK4). One isolated single nucleotide polymorphism (SNP), rs739617 (Pβ€Š=β€Š3.87Γ—10βˆ’5) was also identified to be associated with TRS. The -94delATTG allele (rs28362691) located in the promoter region of NFKB1 was identified by resequencing and was found to associate with TRS (Pβ€Š=β€Š4.85Γ—10βˆ’6). The promoter assay demonstrated that the -94delATTG allele had a significant lower promoter activity than the -94insATTG allele in the SH-SY5Y cells. This study suggests that rs28362691 in NFKB1 might be involved in the development of TRS

    Stem Cell-Based Neuroprotective and Neurorestorative Strategies

    Get PDF
    Stem cells, a special subset of cells derived from embryo or adult tissues, are known to present the characteristics of self-renewal, multiple lineages of differentiation, high plastic capability, and long-term maintenance. Recent reports have further suggested that neural stem cells (NSCs) derived from the adult hippocampal and subventricular regions possess the utilizing potential to develop the transplantation strategies and to screen the candidate agents for neurogenesis, neuroprotection, and neuroplasticity in neurodegenerative diseases. In this article, we review the roles of NSCs and other stem cells in neuroprotective and neurorestorative therapies for neurological and psychiatric diseases. We show the evidences that NSCs play the key roles involved in the pathogenesis of several neurodegenerative disorders, including depression, stroke and Parkinson’s disease. Moreover, the potential and possible utilities of induced pluripotent stem cells (iPS), reprogramming from adult fibroblasts with ectopic expression of four embryonic genes, are also reviewed and further discussed. An understanding of the biophysiology of stem cells could help us elucidate the pathogenicity and develop new treatments for neurodegenerative disorders. In contrast to cell transplantation therapies, the application of stem cells can further provide a platform for drug discovery and small molecular testing, including Chinese herbal medicines. In addition, the high-throughput stem cell-based systems can be used to elucidate the mechanisms of neuroprotective candidates in translation medical research for neurodegenerative diseases

    Hsp90 Interacts Specifically with Viral RNA and Differentially Regulates Replication Initiation of Bamboo mosaic virus and Associated Satellite RNA

    Get PDF
    Host factors play crucial roles in the replication of plus-strand RNA viruses. In this report, a heat shock protein 90 homologue of Nicotiana benthamiana, NbHsp90, was identified in association with partially purified replicase complexes from BaMV-infected tissue, and shown to specifically interact with the 3β€² untranslated region (3β€² UTR) of BaMV genomic RNA, but not with the 3β€² UTR of BaMV-associated satellite RNA (satBaMV RNA) or that of genomic RNA of other viruses, such as Potato virus X (PVX) or Cucumber mosaic virus (CMV). Mutational analyses revealed that the interaction occurs between the middle domain of NbHsp90 and domain E of the BaMV 3β€² UTR. The knockdown or inhibition of NbHsp90 suppressed BaMV infectivity, but not that of satBaMV RNA, PVX, or CMV in N. benthamiana. Time-course analysis further revealed that the inhibitory effect of 17-AAG is significant only during the immediate early stages of BaMV replication. Moreover, yeast two-hybrid and GST pull-down assays demonstrated the existence of an interaction between NbHsp90 and the BaMV RNA-dependent RNA polymerase. These results reveal a novel role for NbHsp90 in the selective enhancement of BaMV replication, most likely through direct interaction with the 3β€² UTR of BaMV RNA during the initiation of BaMV RNA replication

    Matrix metalloproteinase 1 1G/2G gene polymorphism is associated with acquired atrioventricular block via linking a higher serum protein level

    No full text
    Limited studies are available regarding the pathophysiological mechanism of acquired atrioventricular block (AVB). Matrix metalloproteinases (MMPs) and angiotensin-converting enzyme (ACE) have been implicated in the pathogenesis of arrhythmia. However, the relationship between these molecules and acquired AVB is still unclear. One hundred and two patients with documented acquired AVB and 100 controls were studied. Gene polymorphisms of the MMP1 and ACE encoding genes were screened by the gene sequencing method or polymerase chain reaction-fragment length polymorphism assay, followed by an association study. The frequencies of the MMP1 βˆ’1607 2G2G genotype and MMP1 βˆ’1607 2 G allele were significantly higher in the AVB group than that in the controls (OR = 1.933, P = 0.027 and OR = 1.684, P = 0.012, respectively). Consistently, the level of serum MMP1 was significantly greater in acquired AVB patients than that in controls (6568.9 ± 5748.6 pg/ml vs. 4730.5 ± 3377.1 pg/ml, P = 0.019). In addition, the MMP1 2G2G genotype showed a higher MMP-1 serum level than the other genotypes (1G1G/1G2G) (7048.1 ± 5683.0 pg/ml vs. 5072.4 ± 4267.6 pg/ml, P = 0.042). MMP1 1 G/2 G gene polymorphism may contribute to determining the disease susceptibility of acquired AVB by linking the MMP serum protein level

    Early Blood Glucose Level Post-Admission Correlates with the Outcomes and Oxidative Stress in Neonatal Hypoxic-Ischemic Encephalopathy

    No full text
    The antioxidant defense system is involved in the pathogenesis of neonatal hypoxic-ischemic encephalopathy (HIE). To analyze the relationship between first serum blood glucose levels and outcomes in neonatal HIE, seventy-four patients were divided, based on the first glucose level, into group 1 (>0 mg/dL and <60 mg/dL, n =11), group 2 (≥60 mg/dL and <150 mg/dL, n = 49), and group 3 (≥150 mg/dL, n = 14). Abnormal glucose levels had poor outcomes among three groups in terms of the clinical stage (p = 0.001), brain parenchymal lesion (p = 0.004), and neurodevelopmental outcomes (p = 0.029). Hearing impairment was more common in group 3 than in group 1 (p = 0.062) and group 2 (p = 0.010). The MRI findings of group 3 exhibited more thalamus and basal ganglion lesions than those of group 1 (p = 0.012). The glucose level was significantly correlated with clinical staging (p< 0.001), parenchymal brain lesions (p = 0.044), hearing impairment (p = 0.003), and neurodevelopmental outcomes (p = 0.005) by Pearson’s test. The first blood glucose level in neonatal HIE is an important biomarker for clinical staging, MRI findings, as well as hearing and neurodevelopment outcomes. Hyperglycemic patients had a higher odds ratio for thalamus, basal ganglia, and brain stem lesions than hypoglycemic patients with white matter and focal ischemic injury. Hyperglycemia can be due to prolonged or intermittent hypoxia and can be associated with poor outcomes

    A rational approach to estimating the surgical demand elasticity needed to guide manpower reallocation during contagious outbreaks.

    No full text
    Emerging infectious diseases continue to pose serious threats to global public health. So far, however, few published study has addressed the need for manpower reallocation needed in hospitals when such a serious contagious outbreak occurs.To quantify the demand elasticity of the major surgery types in order to guide future manpower reallocation during contagious outbreaks.Based on a nationwide research database in Taiwan, we extracted the monthly volumes of major surgery types for the period 1998-2003, which covered the SARS period, in order to carry out a time series analysis. The demand elasticity of each surgery type was then estimated by autoregressive integrated moving average (ARIMA) analysis.During the study period, the surgical volumes of most selected surgery types either increased or remained steady. We categorized these surgery types into low-, moderate- and high-elastic groups according to their demand elasticity. Appendectomy, 'open reduction of fracture with internal fixation' and 'free skin graft' were in the low demand elasticity group. Transurethral prostatectomy and extracorporeal shockwave lithotripsy (ESWL) were in the high demand elasticity group. The manpower of the departments carrying out the surgeries with low demand elasticity should be maintained during outbreaks. In contrast, departments in charge of surgeries mainly with high demand elasticity, like urology departments, may be in a position to have part of their staff reallocated.Taking advantage of the demand variation during the SARS period in 2003, we adopted the concept of demand elasticity and used a time series approach to figure out an effective index of demand elasticity for various types of surgery that could be used as a rational reference to carry out manpower reallocation during contagious outbreak situations
    • …
    corecore