69 research outputs found

    Genome-wide computational prediction of tandem gene arrays: application in yeasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper describes an efficient <it>in silico </it>method for detecting tandem gene arrays (TGAs) in fully sequenced and compact genomes such as those of prokaryotes or unicellular eukaryotes. The originality of this method lies in the search of protein sequence similarities in the vicinity of each coding sequence, which allows the prediction of tandem duplicated gene copies independently of their functionality.</p> <p>Results</p> <p>Applied to nine hemiascomycete yeast genomes, this method predicts that 2% of the genes are involved in TGAs and gene relics are present in 11% of TGAs. The frequency of TGAs with degenerated gene copies means that a significant fraction of tandem duplicated genes follows the birth-and-death model of evolution. A comparison of sequence identity distributions between sets of homologous gene pairs shows that the different copies of tandem arrayed paralogs are less divergent than copies of dispersed paralogs in yeast genomes. It suggests that paralogs included in tandem structures are more recent or more subject to the gene conversion mechanism than other paralogs.</p> <p>Conclusion</p> <p>The method reported here is a useful computational tool to provide a database of TGAs composed of functional or nonfunctional gene copies. Such a database has obvious applications in the fields of structural and comparative genomics. Notably, a detailed study of the TGA catalog will make it possible to tackle the fundamental questions of the origin and evolution of tandem gene clusters.</p

    Growth of Yersinia pseudotuberculosis in human plasma: impacts on virulence and metabolic gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In man, infection by the Gram-negative enteropathogen <it>Yersinia pseudotuberculosis </it>is usually limited to the terminal ileum. However, in immunocompromised patients, the microorganism may disseminate from the digestive tract and thus cause a systemic infection with septicemia.</p> <p>Results</p> <p>To gain insight into the metabolic pathways and virulence factors expressed by the bacterium at the blood stage of pseudotuberculosis, we compared the overall gene transcription patterns (the transcriptome) of bacterial cells cultured in either human plasma or Luria-Bertani medium. The most marked plasma-triggered metabolic consequence in <it>Y. pseudotuberculosis </it>was the switch to high glucose consumption, which is reminiscent of the acetogenic pathway (known as "glucose overflow") in <it>Escherichia coli</it>. However, upregulation of the glyoxylate shunt enzymes suggests that (in contrast to <it>E. coli</it>) acetate may be further metabolized in <it>Y. pseudotuberculosis</it>. Our data also indicate that the bloodstream environment can regulate major virulence genes (positively or negatively); the <it>yadA </it>adhesin gene and most of the transcriptional units of the pYV-encoded type III secretion apparatus were found to be upregulated, whereas transcription of the pH6 antigen locus was strongly repressed.</p> <p>Conclusion</p> <p>Our results suggest that plasma growth of <it>Y. pseudotuberculosis </it>is responsible for major transcriptional regulatory events and prompts key metabolic reorientations within the bacterium, which may in turn have an impact on virulence.</p

    Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium

    Get PDF
    Background The colonial cyanobacterium Microcystis proliferates in a wide range of freshwater ecosystems and is exposed to changing environmental factors during its life cycle. Microcystis blooms are often toxic, potentially fatal to animals and humans, and may cause environmental problems. There has been little investigation of the genomics of these cyanobacteria. Results Deciphering the 5,172,804 bp sequence of Microcystis aeruginosa PCC 7806 has revealed the high plasticity of its genome: 11.7% DNA repeats containing more than 1,000 bases, 6.8% putative transposases and 21 putative restriction enzymes. Compared to the genomes of other cyanobacterial lineages, strain PCC 7806 contains a large number of atypical genes that may have been acquired by lateral transfers. Metabolic pathways, such as fermentation and a methionine salvage pathway, have been identified, Conclusion Microcystis aeruginosa PCC 7806 appears to have adopted an evolutionary strategy relying on unusual genome plasticity to adapt to eutrophic freshwater ecosystems, a property shared by another strain of M. aeruginosa (NIES-843). Comparisons of the genomes of PCC 7806 and other cyanobacterial strains indicate that a similar strategy may have also been used by the marine strain Crocosphaera watsonii WH8501 to adapt to other ecological niches, such as oligotrophic open oceans.

    A comparison of random sequence reads versus 16S rDNA sequences for estimating the biodiversity of a metagenomic library

    Get PDF
    The construction of metagenomic libraries has permitted the study of microorganisms resistant to isolation and the analysis of 16S rDNA sequences has been used for over two decades to examine bacterial biodiversity. Here, we show that the analysis of random sequence reads (RSRs) instead of 16S is a suitable shortcut to estimate the biodiversity of a bacterial community from metagenomic libraries. We generated 10 010 RSRs from a metagenomic library of microorganisms found in human faecal samples. Then searched them using the program BLASTN against a prokaryotic sequence database to assign a taxon to each RSR. The results were compared with those obtained by screening and analysing the clones containing 16S rDNA sequences in the whole library. We found that the biodiversity observed by RSR analysis is consistent with that obtained by 16S rDNA. We also show that RSRs are suitable to compare the biodiversity between different metagenomic libraries. RSRs can thus provide a good estimate of the biodiversity of a metagenomic library and, as an alternative to 16S, this approach is both faster and cheaper

    PCR-Based Identification of Klebsiella pneumoniae subsp. rhinoscleromatis, the Agent of Rhinoscleroma

    Get PDF
    Rhinoscleroma is a chronic granulomatous infection of the upper airways caused by the bacterium Klebsiella pneumoniae subsp. rhinoscleromatis. The disease is endemic in tropical and subtropical areas, but its diagnosis remains difficult. As a consequence, and despite available antibiotherapy, some patients evolve advanced stages that can lead to disfiguration, severe respiratory impairment and death by anoxia. Because identification of the etiologic agent is crucial for the definitive diagnosis of the disease, the aim of this study was to develop two simple PCR assays. We took advantage of the fact that all Klebsiella pneumoniae subsp. rhinoscleromatis isolates are (i) of capsular serotype K3; and (ii) belong to a single clone with diagnostic single nucleotide polymorphisms (SNP). The complete sequence of the genomic region comprising the capsular polysaccharide synthesis (cps) gene cluster was determined. Putative functions of the 21 genes identified were consistent with the structure of the K3 antigen. The K3-specific sequence of gene Kr11509 (wzy) was exploited to set up a PCR test, which was positive for 40 K3 strains but negative when assayed on the 76 other Klebsiella capsular types. Further, to discriminate Klebsiella pneumoniae subsp. rhinoscleromatis from other K3 Klebsiella strains, a specific PCR assay was developed based on diagnostic SNPs in the phosphate porin gene phoE. This work provides rapid and simple molecular tools to confirm the diagnostic of rhinoscleroma, which should improve patient care as well as knowledge on the prevalence and epidemiology of rhinoscleroma

    A Human-Curated Annotation of the Candida albicans Genome

    Get PDF
    Recent sequencing and assembly of the genome for the fungal pathogen Candida albicans used simple automated procedures for the identification of putative genes. We have reviewed the entire assembly, both by hand and with additional bioinformatic resources, to accurately map and describe 6,354 genes and to identify 246 genes whose original database entries contained sequencing errors (or possibly mutations) that affect their reading frame. Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that might be targeted for antifungal therapy. We also observed that, compared to other fungi, the protein-coding sequences in the C. albicans genome are especially rich in short sequence repeats. Finally, our improved annotation permitted a detailed analysis of several multigene families, and comparative genomic studies showed that C. albicans has a far greater catabolic range, encoding respiratory Complex 1, several novel oxidoreductases and ketone body degrading enzymes, malonyl-CoA and enoyl-CoA carriers, several novel amino acid degrading enzymes, a variety of secreted catabolic lipases and proteases, and numerous transporters to assimilate the resulting nutrients. The results of these efforts will ensure that the Candida research community has uniform and comprehensive genomic information for medical research as well as for future diagnostic and therapeutic applications

    Differential Small RNA Responses against Co-Infecting Insect-Specific Viruses in Aedes albopictus Mosquitoes

    No full text
    The mosquito antiviral response has mainly been studied in the context of arthropod-borne virus (arbovirus) infection in female mosquitoes. However, in nature, both female and male mosquitoes are frequently infected with insect-specific viruses (ISVs). ISVs are capable of infecting the reproductive organs of both sexes and are primarily maintained by vertical transmission. Since the RNA interference (RNAi)-mediated antiviral response plays an important antiviral role in mosquitoes, ISVs constitute a relevant model to study sex-dependent antiviral responses. Using a naturally generated viral stock containing three distinct ISVs, Aedes flavivirus (AEFV), Menghai rhabdovirus (MERV), and Shinobi tetra virus (SHTV), we infected adult Aedes albopictus females and males and generated small RNA libraries from ovaries, testes, and the remainder of the body. Overall, both female and male mosquitoes showed unique small RNA profiles to each co-infecting ISV regardless of the sex or tissue tested. While all three ISVs generated virus-derived siRNAs, only MERV generated virus-derived piRNAs. We also studied the expression of PIWI genes in reproductive tissues and carcasses. In contrast to Piwi5-9, Piwi1-4 were abundantly expressed in ovaries and testes, suggesting that Piwi5-9 are involved in exogenous viral piRNA production. Together, our results show that ISV-infected Aedes albopictus produce viral small RNAs in a virus-specific manner and that male mosquitoes mount a similar small RNA-mediated antiviral response to that of females

    Reconstruction in silico de voies métaboliques (application aux voies glycolitiques de Propionibacterium freudenreichii subsp. shermanii)

    No full text
    Depuis la dernière décennie, la recherche en microbiologie fait face à un véritable changement qualitatif et quantitatif avec l émergence de la génomique (qui concerne les génomes et leur analyse) et le développement de la biologie à haut débit (tous les ʺomiquesʺ). Ce changement permet d aborder l étude du fonctionnement cellulaire (voies de signalisations, voies métaboliques) dans sa globalité, et non plus par l étude individuelle de ses acteurs biologiques. Dans le cadre de cette thèse, nous nous intéressons à la reconstruction des voies métaboliques d une bactérie d intérêt agro-alimentaire, Propionibacterium freudenreichii subsp. Shermanii (P. shermanii), à partir de l analyse de son génome. La problématique de la reconstruction de voies métaboliques est double. D une part, il faut pouvoir identifier les fonctions enzymatiques présentes dans l organisme, ce qui se traduit par l analyse du génome de P. shermanii. D autre part, il s agit de reconstruire le réseau des voies métaboliques à partir des fonctions enzymatiques précédemment identifiées. Après avoir mis en place des méthodologies et des outils bioinformatiques permettant d analyser les données génomiques de P. shermanii, nous en avons reconstruit manuellement et automatiquement les voies glycolytiques (glycose et pentose phosphates).RENNES-Agrocampus-CRD (352382323) / SudocSudocFranceF
    corecore