182 research outputs found

    Cisternal Organization of the Endoplasmic Reticulum during Mitosis

    Get PDF
    The endoplasmic reticulum (ER) of animal cells is a single, dynamic, and continuous membrane network of interconnected cisternae and tubules spread out throughout the cytosol in direct contact with the nuclear envelope. During mitosis, the nuclear envelope undergoes a major rearrangement, as it rapidly partitions its membrane-bound contents into the ER. It is therefore of great interest to determine whether any major transformation in the architecture of the ER also occurs during cell division. We present structural evidence, from rapid, live-cell, three-dimensional imaging with confirmation from high-resolution electron microscopy tomography of samples preserved by high-pressure freezing and freeze substitution, unambiguously showing that from prometaphase to telophase of mammalian cells, most of the ER is organized as extended cisternae, with a very small fraction remaining organized as tubules. In contrast, during interphase, the ER displays the familiar reticular network of convolved cisternae linked to tubules

    Journeys through the Golgiβ€”taking stock in a new era

    Get PDF
    The Golgi apparatus is essential for protein sorting and transport. Many researchers have long been fascinated with the form and function of this organelle. Yet, despite decades of scrutiny, the mechanisms by which proteins are transported across the Golgi remain controversial. At a recent meeting, many prominent Golgi researchers assembled to critically evaluate the core issues in the field. This report presents the outcome of their discussions and highlights the key open questions that will help guide the field into a new era

    The Golgi Localization of GOLPH2 (GP73/GOLM1) Is Determined by the Transmembrane and Cytoplamic Sequences

    Get PDF
    Golgi phosphoprotein 2 (GOLPH2) is a resident Golgi type-II membrane protein upregulated in liver disease. Given that GOLPH2 traffics through endosomes and can be secreted into the circulation, it is a promising serum marker for liver diseases. The structure of GOLPH2 and the functions of its different protein domains are not known. In the current study, we investigated the structural determinants for Golgi localization using a panel of GOLPH2 truncation mutants. The Golgi localization of GOLPH2 was not affected by the deletion of the C-terminal part of the protein. A truncated mutant containing the N-terminal portion (the cytoplasmic tail and transmembrane domain (TMD)) localized to the Golgi. Sequential deletion analysis of the N-terminal indicated that the TMD with a positively charged residue in the cytoplasmic N-terminal tail were sufficient to support Golgi localization. We also showed that both endogenous and secreted GOLPH2 exist as a disulfide-bonded dimer, and the coiled-coil domain was sufficient for dimerization. This structural knowledge is important for the understanding the pathogenic role of GOLPH2 in liver diseases, and the development of GOLPH2-based hepatocellular cancer diagnostic methods

    Live Imaging at the Onset of Cortical Neurogenesis Reveals Differential Appearance of the Neuronal Phenotype in Apical versus Basal Progenitor Progeny

    Get PDF
    The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors

    Regulatory interactions between IRG resistance GTPases in the cellular response to Toxoplasma gondii

    Get PDF
    Members of the immunity-related GTPase (IRG) family are interferon-inducible resistance factors against a broad spectrum of intracellular pathogens including Toxoplasma gondii. The molecular mechanisms governing the function and regulation of the IRG resistance system are largely unknown. We find that IRG proteins function in a system of direct, nucleotide-dependent regulatory interactions between family members. After interferon induction but before infection, the three members of the GMS subfamily of IRG proteins, Irgm1, Irgm2 and Irgm3, which possess an atypical nucleotide-binding site, regulate the intracellular positioning of the conventional GKS subfamily members, Irga6 and Irgb6. Following infection, the normal accumulation of Irga6 protein at the parasitophorous vacuole membrane (PVM) is nucleotide dependent and also depends on the presence of all three GMS proteins. We present evidence that an essential role of the GMS proteins in this response is control of the nucleotide-bound state of the GKS proteins, preventing their GTP-dependent activation before infection. Accumulation of IRG proteins at the PVM has previously been shown to be associated with a block in pathogen replication: our results relate for the first time the enzymatic properties of IRG proteins to their role in pathogen resistance

    Fine Expression Profiling of Full-length Transcripts using a Size-unbiased cDNA Library Prepared with the Vector-capping Method

    Get PDF
    Recently, we have developed a vector-capping method for constructing a full-length cDNA library. In the present study, we performed in-depth analysis of the vector-capped cDNA library prepared from a single type of cell. As a result of single-pass sequencing analysis of 24Β 000 clones randomly isolated from the unamplified library, we identified 19Β 951 full-length cDNA clones whose intactness was confirmed by the presence of an additional G at their 5' end. The full-length cDNA content was >95%. Mapping these sequences to the human genome, we identified 4513 transcriptional units that include 36 antisense transcripts against known genes. Comparison of the frequencies of abundant clones showed that the expression profiles of different libraries, including the distribution of transcriptional start sites (TSSs), were reproducible. The analysis of long-sized cDNAs showed that this library contained many cDNAs with a long-sized insert up to 11Β 199Β bp of golgin B, including multiple slicing variants for filamin A and filamin B. These results suggest that the size-unbiased full-length cDNA library constructed using the vector-capping method will be an ideal resource for fine expression profiling of transcriptional variants with alternative TSSs and alternative splicing

    Myosin VI small insert isoform maintains exocytosis by tethering secretory granules to the cortical actin.

    Get PDF
    Before undergoing neuroexocytosis, secretory granules (SGs) are mobilized and tethered to the cortical actin network by an unknown mechanism. Using an SG pull-down assay and mass spectrometry, we found that myosin VI was recruited to SGs in a Ca(2+)-dependent manner. Interfering with myosin VI function in PC12 cells reduced the density of SGs near the plasma membrane without affecting their biogenesis. Myosin VI knockdown selectively impaired a late phase of exocytosis, consistent with a replenishment defect. This exocytic defect was selectively rescued by expression of the myosin VI small insert (SI) isoform, which efficiently tethered SGs to the cortical actin network. These myosin VI SI-specific effects were prevented by deletion of a c-Src kinase phosphorylation DYD motif, identified in silico. Myosin VI SI thus recruits SGs to the cortical actin network, potentially via c-Src phosphorylation, thereby maintaining an active pool of SGs near the plasma membrane

    Optimised Anaesthesia to Reduce Post Operative Cognitive Decline (POCD) in Older Patients Undergoing Elective Surgery, a Randomised Controlled Trial

    Get PDF
    Background The study determined the one year incidence of post operative cognitive decline (POCD) and evaluated the effectiveness of an intra-operative anaesthetic intervention in reducing post-operative cognitive impairment in older adults (over 60 years of age) undergoing elective orthopaedic or abdominal surgery. Methods and Trial Design The design was a prospective cohort study with a nested randomised, controlled intervention trial, using intra-operative BiSpectral index and cerebral oxygen saturation monitoring to enable optimisation of anaesthesia depth and cerebral oxygen saturation in older adults undergoing surgery. Results In the 52 week prospective cohort study (192 surgical patients and 138 controls), mild (?2 = 17.9 p<0.0001), moderate (?2 = 7.8 p = 0.005) and severe (?2 = 5.1 p = 0.02) POCD were all significantly higher after 52 weeks in the surgical patients than among the age matched controls. In the nested RCT, 81 patients were randomized, 73 contributing to the data analysis (34 intervention, 39 control). In the intervention group mild POCD was significantly reduced at 1, 12 and 52 weeks (Fisher’s Exact Test p = 0.018, ?2 = 5.1 p = 0.02 and ?2 = 5.9 p = 0.015), and moderate POCD was reduced at 1 and 52 weeks (?2 = 4.4 p = 0Β·037 and ?2 = 5.4 p = 0.02). In addition there was significant improvement in reaction time at all time-points (Vigilance Reaction Time MWU Z = ?2.1 p = 0.03, MWU Z = ?2.7 p = 0.004, MWU Z = ?3.0 p = 0.005), in MMSE at one and 52 weeks (MWU Z = ?2.9 p = 0.003, MWU Z = ?3.3 p = 0.001), and in executive function at 12 and 52 weeks (Trail Making MWU Z = ?2.4 p = .0.018, MWU Z = ?2.4 p = 0.019). Conclusion POCD is common and persistent in older adults following surgery. The results of the nested RCT indicate the potential benefits of intra-operative monitoring of anaesthetic depth and cerebral oxygenation as a pragmatic intervention to reduce post-operative cognitive impairment

    HIV-1 Nef Targets MHC-I and CD4 for Degradation Via a Final Common Ξ²-COP–Dependent Pathway in T Cells

    Get PDF
    To facilitate viral infection and spread, HIV-1 Nef disrupts the surface expression of the viral receptor (CD4) and molecules capable of presenting HIV antigens to the immune system (MHC-I). To accomplish this, Nef binds to the cytoplasmic tails of both molecules and then, by mechanisms that are not well understood, disrupts the trafficking of each molecule in different ways. Specifically, Nef promotes CD4 internalization after it has been transported to the cell surface, whereas Nef uses the clathrin adaptor, AP-1, to disrupt normal transport of MHC-I from the TGN to the cell surface. Despite these differences in initial intracellular trafficking, we demonstrate that MHC-I and CD4 are ultimately found in the same Rab7+ vesicles and are both targeted for degradation via the activity of the Nef-interacting protein, Ξ²-COP. Moreover, we demonstrate that Nef contains two separable Ξ²-COP binding sites. One site, an arginine (RXR) motif in the N-terminal Ξ± helical domain of Nef, is necessary for maximal MHC-I degradation. The second site, composed of a di-acidic motif located in the C-terminal loop domain of Nef, is needed for efficient CD4 degradation. The requirement for redundant motifs with distinct roles supports a model in which Nef exists in multiple conformational states that allow access to different motifs, depending upon which cellular target is bound by Nef
    • …
    corecore