18 research outputs found
Sedimentology and sequence stratigraphy of the Congo and Kalahari basins of South Central Africa and their evolution during the formation and break-up of West Gondwana
The high elevated (ca. 1100 m) continental Kalahari Basin (KB) of southern Africa and the linked lower lying (ca. 400 m) Congo Basin (CB) of central Africa preserve in their interiors extensive sedimentary rock sequences and sediments that represent a unique record of the Phanerozoic geodynamic and climatic evolution of sub-Saharan Africa. In this thesis, field observations and new borehole data from the Democratic Republic of Congo (DRC) and Botswana are integrated with new paleontology and geochronology to present a substantially revised stratigraphy for the CB, and south-central Africa in general. This work also introduces a new multiphase model for the subsidence and uplift history of the CB, and improves correlations with the Cape-Karoo Basin (CKB) of South Africa and the Paraná Basin (PB) of south-east Brazil. Four deep boreholes, each between 2 and 4.5 km deep, drilled in the centre of the CB in the 1950’s and 1970’s are re-examined together with the colonial literature (in French) and available seismic data. This stratigraphic and basin analysis is complemented with new U-Pb dates of detrital zircons from core-samples of two of the boreholes (Samba and Dekese), as well as from samples collected during field work in the Kwango region of the south-west DRC. This work, for the first time, constrains the maximum ages and source provenances of the successions in the CB. Following the Pan African orogens (ca. 650-530 Ma), extensive sequences of red beds were deposited by regional paleocurrents to the south. These are now best preserved (1 km thick) along the West Congo, Oubanguides, and Lufilian Belts surrounding the CB. Overlying a hiatus that represents most of the early-Paleozoic, is a 1 to 3 km thick succession of easterly derived glacial, and then continental sequences of the Karoo Supergroup. This succession records the first main episode of subsidence [10-15 m/Ma], interrupted by a phase of uplift that is likely related to far-field intracontinental deformation within Gondwana supercontinent during the Variscan and Cape Fold orogenies (ca. 250-330 Ma) at its peripheries. Detrital zircons from the lower Karoo diamictites are dated at 1.85-2.05 Ga and 1.37- 1.42 Ga, and thus sourced from Paleoproterozoic (Eburnean) and mid-Mesoproterozoic (Kibaran type-I) basement rocks in Uganda and Tanzania. Zircons from all the other successions in the CB date predominantly at 950-1050 Ma and 500-800 Ma. These are derived from sediment recycling of late-Mesoproterozoic (Kibaran type-II) and late- Neoproterozoic (Pan African) sources in the Central African Republic (CAR) and Chad. A distinct unconformity across the Karoo Supergroup in the CB is overlain by 500- 1000 m Jurassic-Cretaceous sequences, here named the Congo Supergroup. During initial rapid subsidence [10-50 m/Ma], late-Jurassic (Kimmeridgian) shallow marine to continental sedimentation attests to a short transgression of proto-Indian Ocean waters into the northern CB (at 160 m above present day sea-level), succeeded by widespread deposition of aeolian dunes that extend from the southern CB to the PB in South America. The youngest zircons from these aeolian sediments in the CB date at 190 Ma and 240-290 Ma, and most likely indicate the influence of extensive silicic volcanic ash derived from the proto-Andes along the south-western margin of Gondwana. Two superimposed mid-Cretaceous (Albian-Cenomanian) lacustrine sequences in the central CB record a succeeding, slower [10-15 m/Ma], phase of basin subsidence during the opening of the South Atlantic (ca. 85-135 Ma). These Cretaceous sequences are in turn truncated by another regional peneplanation surface covered by Cenozoic (Eocene) silcretized sands and alluviums of the Kalahari Group, only 50-250 m thick in the centre of the CB. Southward, on top of the Kalahari Plateau in the central desert region of north-west Botswana, new boreholes intercepted laterally equivalent condensed lacustrine carbonates and calcretes (20-50 m thick) covered by sands. These terrestrial sequences are key archives of late-Mesozoic – Cenozoic paleo-climate changes, yet they remain stratigraphically unresolved. This new analysis of the Phanerozoic continental basins of south-central Africa and their equivalents in South America, opens a fresh continental-scale window into how West Gondwana break-up and concomitant epeirogenic uplifts of Kalahari (>2 km) and Congo (>200 m) are linked to interactions between the lithosphere and mantle geodynamics, and how these processes likely affected global climate changes
Proterozoic–Paleozoic Sedimentary Rocks and Mesozoic–Cenozoic Landscapes of the Cape Mountains Across the Kango Complex Reveal ‘More Gaps Than Record’ from Rodinia and Gondwana to Africa
The Kango (Cango) region flanks the northern margins of the Klein Karoo and the Cape Mountains across the Western Cape Province of South Africa. It preserves a condensed Proterozoic–Paleozoic stratigraphy exposed via a Mesozoic–Cenozoic morphology with a present Alpine-like topography. Its rocks and landscapes have been repeatedly mapped and documented for the past 150 years. Over the last 25 years, we remapped and dated a central-eastern section of this region. The subvertically bedded and cleaved rocks reveal an 8–10 km thick stratigraphy covering more than 700 million years between ca. 1200 and 500 Ma with several unconformities and disconformities. At ca. 252 Ma, during the Cape orogeny, this Kango Complex was deformed along thrusts and sub-isoclinal folds producing steeply dipping phyllites and slates. It was uplifted by 3–5 km during the Kalahari epeirogeny between 140 and 60 Ma while eroding at ca. 100–200 m/m.y. (120–80 Ma). During the Cenozoic, the rate of uplift decreased by an order of magnitude and today is ca. 0.4–0.7 m/m.y. across steep slopes and canyons in contrast to the Himalayas where erosion rates are about hundred times faster. A recent publication about this central-eastern section of the Kango region disputes the existence of regional isoclinal folds and suggests that deposition of the oldest sedimentary successions, including carbonate rocks of the Cango Caves (limestone-marble with enigmatic microfossils) was simple, continuous and restricted to between ca. 700 and 500 Ma, decreasing earlier estimates of the stratigraphic age range by 60–80%. Similarly, recent interpretations of the complex landscapes link the northern contact between the Kango and Table Mountain rock sequences to Quaternary faults. We present a new geological database, mapped between 1:500 and 1:10,000 scales, and twelve stratigraphic sections with younging directions linked to structural and isotopic data that support repetitions along regional isoclinal folds and thrust zones of the Kango sequences during the Permo–Triassic Cape orogeny, and geomorphic data that link the origin of its landscapes to weathering and erosion during the Cretaceous–Cenozoic Kalahari epeirogeny. During its evolution, the Kango Basin directly flanked both Grenvillian and Pan-African Mountain systems. But, at an average sedimentation rate of ca. 1 mm/70 years (0.014 mm/year) and with present low erosion rates (0.005 mm/year), there is likely more time missing than preserved of the tectono-erosion across these different regions of Rodinia and Gondwana before Africa emerged. To further evaluate the geodynamic significance of these time gaps requires more field mapping linked to new transdisciplinary geosciences.
RÉSUMÉLa région du Kango (Cango) flanque les marges nord du petit Karoo et des montagnes du Cap dans la province du Western Cape en Afrique du Sud. Elle préserve une stratigraphie condensée protérozoïque–paléozoïque exposée via une morphologie mésozoïque–cénozoïque avec une topographie actuelle de type alpin. Ses roches et ses paysages ont été cartographiés et documentés durant les 150 dernières années. Au cours des 25 dernières années, nous avons re-cartographié et daté une section du centre-est de cette région. Les roches litées de manière subverticale et clivées révèlent une stratigraphie de 8 à 10 km d'épaisseur couvrant plus de 700 millions d'années entre environ 1200 et 500 Ma avec plusieurs non-conformités et disconformités. À 252 Ma, au cours de l'orogenèse du Cap, ce Complexe du Kango s'est déformé le long de chevauchements et de plis isoclinaux produisant des schistes à fort pendage. Il a été soulevé de 3 à 5 km au cours de l'épirogenèse du Kalahari entre 140 et 60 Ma, tout en s'érodant à 100–200 m/m.a. (120–80 Ma). Pendant le Cénozoïque, le taux de soulèvement a diminué d'un ordre de grandeur et il est aujourd'hui d'environ 0,4 à 0,7 m/m.a. à travers des pentes abruptes et des canyons, contrairement à l'Himalaya où les taux d'érosion sont environ cent fois plus rapides. Une publication récente sur cette section du centre-est de la région du Kango conteste l'existence de plis isoclinaux régionaux et suggère que le dépôt des plus anciennes successions sédimentaires, y compris les roches carbonatées des Grottes du Cango (marbre calcaire avec des microfossiles énigmatiques) était simple, continu et limité entre environ 700 et 500 Ma, diminuant les estimations antérieures de la tranche d'âge stratigraphique de 60-80%. De même, des interprétations récentes des paysages complexes relient le contact nord entre les séquences rocheuses du Kango et de Table Mountain à des failles quaternaires. Nous présentons une nouvelle base de données géologiques, cartographiée à des échelles entre 1:500 et 1:10,000, et douze coupes stratigraphiques avec des directions de superposition liées à des données structurales et isotopiques qui concordent avec les répétitions le long des plis isoclinaux régionaux et des zones de chevauchement des séquences du Kango pendant l’orogenèse permo–triassique du Cap, et des données géomorphiques qui relient l'origine de ses paysages à l’altération et à l'érosion au cours de l'épirogenèse du Kalahari au Crétacé–Cénozoïque. Au cours de son évolution, le bassin du Kango flanquait les systèmes montagneux grenvillien et panafricain. Mais, à un taux de sédimentation moyen d’environ 1 mm/70 ans (0,014 mm/an) et avec les faibles taux d'érosion actuels (0,005 mm/an), il manque probablement plus d’enregistrements de la tectonique et érosion de ces différentes régions de Rodinia et Gondwana avant l'émergence de l'Afrique que ce qui est actuellement préservé. Pour évaluer la signification géodynamique de ces intervalles de temps manquant, il faut d’avantage de cartographie de terrain associée à de nouvelles géosciences transdisciplinaires
From source to sink in central Gondwana: Exhumation of the Precambrian basement rocks of Tanzania and sediment accumulation in the adjacent Congo basin
Apatite fission track (AFT) and (U-Th)/He (AHe) thermochronometry data are reported and used to unravel the exhumation history of crystalline basement rocks from the elevated (>1000 m above sea level) but low-relief Tanzanian Craton. Coeval episodes of sedimentation documented within adjacent Paleozoic to Mesozoic basins of southern Tanzania and the Congo basin of the Democratic Republic of Congo indicate that most of the cooling in the basement rocks in Tanzania was linked to erosion. Basement samples were from an exploration borehole located within the craton and up to 2200 m below surface. Surface samples were also analyzed. AFT dates range between 317 ± 33 Ma and 188 ± 44 Ma. Alpha (Ft)-corrected AHe dates are between 433 ± 24 Ma and 154 ± 20 Ma. Modeling of the data reveals two important periods of cooling within the craton: one during the Carboniferous-Triassic (340–220 Ma) and a later, less well constrained episode, during the late Cretaceous. The later exhumation is well detected proximal to the East African Rift (70 Ma). Thermal histories combined with the estimated geothermal gradient of 9°C/km constrained by the AFT and AHe data from the craton and a mean surface temperature of 20°C indicate removal of up to 9 ± 2 km of overburden since the end of Paleozoic. The correlation of erosion of the craton and sedimentation and subsidence within the Congo basin in the Paleozoic may indicate regional flexural geodynamics of the lithosphere due to lithosphere buckling induced by far-field compressional tectonic processes and thereafter through deep mantle upwelling and epeirogeny tectonic processes
Proterozoic–Paleozoic Sedimentary Rocks and Mesozoic–Cenozoic Landscapes of the Cape Mountains Across the Kango Complex Reveal ‘More Gaps Than Record’ from Rodinia and Gondwana to Africa
The Kango (Cango) region flanks the northern margins of the Klein Karoo and the Cape Mountains across the Western Cape Province of South Africa. It preserves a condensed Proterozoic–Paleozoic stratigraphy exposed via a Mesozoic–Cenozoic morphology with a present Alpine-like topography. Its rocks and landscapes have been repeatedly mapped and documented for the past 150 years. Over the last 25 years, we remapped and dated a central-eastern section of this region. The subvertically bedded and cleaved rocks reveal an 8–10 km thick stratigraphy covering more than 700 million years between ca. 1200 and 500 Ma with several unconformities and disconformities. At ca. 252 Ma, during the Cape orogeny, this Kango Complex was deformed along thrusts and sub-isoclinal folds producing steeply dipping phyllites and slates. It was uplifted by 3–5 km during the Kalahari epeirogeny between 140 and 60 Ma while eroding at ca. 100–200 m/m.y. (120–80 Ma). During the Cenozoic, the rate of uplift decreased by an order of magnitude and today is ca. 0.4–0.7 m/m.y. across steep slopes and canyons in contrast to the Himalayas where erosion rates are about hundred times faster. A recent publication about this central-eastern section of the Kango region disputes the existence of regional isoclinal folds and suggests that deposition of the oldest sedimentary successions, including carbonate rocks of the Cango Caves (limestone-marble with enigmatic microfossils) was simple, continuous and restricted to between ca. 700 and 500 Ma, decreasing earlier estimates of the stratigraphic age range by 60–80%. Similarly, recent interpretations of the complex landscapes link the northern contact between the Kango and Table Mountain rock sequences to Quaternary faults. We present a new geological database, mapped between 1:500 and 1:10,000 scales, and twelve stratigraphic sections with younging directions linked to structural and isotopic data that support repetitions along regional isoclinal folds and thrust zones of the Kango sequences during the Permo–Triassic Cape orogeny, and geomorphic data that link the origin of its landscapes to weathering and erosion during the Cretaceous–Cenozoic Kalahari epeirogeny. During its evolution, the Kango Basin directly flanked both Grenvillian and Pan-African Mountain systems. But, at an average sedimentation rate of ca. 1 mm/70 years (0.014 mm/year) and with present low erosion rates (0.005 mm/year), there is likely more time missing than preserved of the tectono-erosion across these different regions of Rodinia and Gondwana before Africa emerged. To further evaluate the geodynamic significance of these time gaps requires more field mapping linked to new transdisciplinary geosciences.La région du Kango (Cango) flanque les marges nord du petit Karoo et des montagnes du Cap dans la province du Western Cape en Afrique du Sud. Elle préserve une stratigraphie condensée protérozoïque–paléozoïque exposée via une morphologie mésozoïque–cénozoïque avec une topographie actuelle de type alpin. Ses roches et ses paysages ont été cartographiés et documentés durant les 150 dernières années. Au cours des 25 dernières années, nous avons re-cartographié et daté une section du centre-est de cette région. Les roches litées de manière subverticale et clivées révèlent une stratigraphie de 8 à 10 km d'épaisseur couvrant plus de 700 millions d'années entre environ 1200 et 500 Ma avec plusieurs non-conformités et disconformités. À 252 Ma, au cours de l'orogenèse du Cap, ce Complexe du Kango s'est déformé le long de chevauchements et de plis isoclinaux produisant des schistes à fort pendage. Il a été soulevé de 3 à 5 km au cours de l'épirogenèse du Kalahari entre 140 et 60 Ma, tout en s'érodant à 100–200 m/m.a. (120–80 Ma). Pendant le Cénozoïque, le taux de soulèvement a diminué d'un ordre de grandeur et il est aujourd'hui d'environ 0,4 à 0,7 m/m.a. à travers des pentes abruptes et des canyons, contrairement à l'Himalaya où les taux d'érosion sont environ cent fois plus rapides. Une publication récente sur cette section du centre-est de la région du Kango conteste l'existence de plis isoclinaux régionaux et suggère que le dépôt des plus anciennes successions sédimentaires, y compris les roches carbonatées des Grottes du Cango (marbre calcaire avec des microfossiles énigmatiques) était simple, continu et limité entre environ 700 et 500 Ma, diminuant les estimations antérieures de la tranche d'âge stratigraphique de 60-80%. De même, des interprétations récentes des paysages complexes relient le contact nord entre les séquences rocheuses du Kango et de Table Mountain à des failles quaternaires. Nous présentons une nouvelle base de données géologiques, cartographiée à des échelles entre 1:500 et 1:10,000, et douze coupes stratigraphiques avec des directions de superposition liées à des données structurales et isotopiques qui concordent avec les répétitions le long des plis isoclinaux régionaux et des zones de chevauchement des séquences du Kango pendant l’orogenèse permo–triassique du Cap, et des données géomorphiques qui relient l'origine de ses paysages à l’altération et à l'érosion au cours de l'épirogenèse du Kalahari au Crétacé–Cénozoïque. Au cours de son évolution, le bassin du Kango flanquait les systèmes montagneux grenvillien et panafricain. Mais, à un taux de sédimentation moyen d’environ 1 mm/70 ans (0,014 mm/an) et avec les faibles taux d'érosion actuels (0,005 mm/an), il manque probablement plus d’enregistrements de la tectonique et érosion de ces différentes régions de Rodinia et Gondwana avant l'émergence de l'Afrique que ce qui est actuellement préservé. Pour évaluer la signification géodynamique de ces intervalles de temps manquant, il faut d’avantage de cartographie de terrain associée à de nouvelles géosciences transdisciplinaires
U–Pb detrital zircon dates and source provenance analysis of Phanerozoic sequences of the Congo Basin, central Gondwana
International audienceThe Congo Basin (CB) is the largest sediment sink of central Gondwana, built on a mosaic of Precambrian crustal blocks amalgamated during the mid-Paleoproterozoic (Eburnian; 2.1–1.8 Ga), late Mesoproterozoic (Kibaran; 1.4–1.0 Ga), and late Neoproterozoic–early Cambrian (Pan African; 750–500 Ma). Sporadic uplift, tilting and erosion of these Precambrian terrains form the source regions for the sedimentary sequences that fill the CB. We investigate the Phanerozoic successions in the field and along four historic deep boreholes drilled in the center of the basin, and date detrital zircons from the main stratigraphic groups to characterize their provenance ages and reconstruct the paleogeographic evolution of the CB during amalgamation and break-up of the Gondwana supercontinent. Sedimentological data show that the oldest, upper Neoproterozoic–lower Paleozoic Redbeds (the Inkisi, Aruwimi and Biano Groups) were derived from the north. Zircons from these sequences have two dominant age-populations of 1100–950 Ma and 800–600 Ma, likely sourced from Kibaran and Pan African terrains within the Oubanguides (e.g. the Central Saharan Belt) and parts of the North African Shield (e.g. Darfour). The overlying Carboniferous–Permian glacial and deglaciation sequences (the Lukuga Group) have similar peaks, as well as abundant zircons of 2.05–1.85 Ga and a subordinate number dated at 1.42–1.37 Ga. The latter are from Eburnian and Kibaran sources in east-central Africa, consistent with west-facing glacial paleo-valleys preserved along the eastern margin of the CB. The succeeding Triassic (the Haute–Lueki Group) and Jurassic–Cretaceous (the Kwango Group) fluvial and aeolian red sandstones were again derived from the north. Their range of zircon dates has two main peaks at 1000 Ma and 600 Ma, but also contain small younger grains of 290–240 Ma and 200–190 Ma. We interpret these younger zircons to be derived from volcanic dust that originated during late Paleozoic–Jurassic magmatism of the Choiyoi and Chon Aike Provinces flanking the Andean subduction margin of Gondwana. By contrast, the uppermost Cenozoic alluviums of the CB (the Kalahari Group) contain diamond concentrates and large zircon fragments dated at 3–2.5 Ga, derived from the Kasai and Cuango Cratons, to the south, which host Cretaceous diamondiferous kimberlites
Formation and colapse of the Kalahari Duricrust ["African surface"] across the Cogo Basin, with implications for changes in rates of Cenozoic off-shore sedimentation
International audienc