211 research outputs found

    Biometry and Intraocular Lens Power Calculation by Combined Scheimpflug-Placido Disc versus Optical Interferometry Devices

    Get PDF
    Purpose: To compare the results of the current gold standard, laser interferometry, and keratometry by the IOL-Master, with a newly developed Galilei G6 using raytracing software Okulix for intraocular lens (IOL) power calculations. Methods: For comparison of the IOL-power calculation of both devices, we analyzed the difference between the actual one-month postoperative subjective refraction and the theoretically calculated target refraction before cataract surgery. The IOL was selected according to the IOL Master recommendation aiming for emmetropia after surgery. We analyzed the differences of the measurements of the basic biometric data in 205 healthy eyes by each device. Results: Our study included 205 healthy, unoperated eyes from 117 patients (61 women, 56 men) aged 20 to 75 years. Twenty-two eyes of cataract patients were also included in this retrospective study design. The mean difference between the prediction of the postoperative refraction and the refraction actually achieved was 0.03 D for the IOL Master and –0.23 D for the Galilei G6. The difference was not statistically significant (P = 0.059). The difference between the IOL power calculation of the IOL Master and the calculation of the G6 was not statistically significant (P = 0.064). The difference between the predicted refraction of the G6 and the refraction achieved after one month was also not statistically significant (P = 0.12) and neither was the difference between the predicted refraction of the IOL Master and the achieved refraction (P = 0.39). The mean axial length was calculated as 24.21 ± 0.80 mm using the IOL Master and 24.27 ± 0.82 mm using the Galilei G6 device. The mean value regarding anterior chamber depth (ACD) of the IOL master was 3.46 ± 0.23 mm and for the Galilei was G6 3.51 ± 0.25 mm. When comparing the white to white (WTW) values of the IOL master, it showed mean values of 12.32 ± 0.31 and Galilei showed mean values of G6 12.21 ± 0.28. All of these differences (between Galileo and IOL Master measurements) were statistically significant (P < 0.001). Conclusion: Both the laser interferometry/keratometry performed by the IOL Master and the interferometry/raytracing biometry strategy performed by the Galilei G6 demonstrated equal results when executing the IOL power calculation before cataract surgery in eyes with no prior ocular surgery

    Safety and Precision of Two Different Flap-morphologies Created During Low Energy Femtosecond Laser-assisted LASIK

    Get PDF
    Purpose: Currently, two major principles exist to create LASIK flaps: firstly, a strictly horizontal (2D) cut similar to the microkeratome-cut and secondly an angled cut with a “step-like” edge (3D). The strictly horizontal (2D) cut method can be performed using apparatus such as the low-energy FEMTO LDV Z8 laser and its predecessors which are specific to this type. Alternatively, the low-energy FEMTO LDV Z8 laser’s 3D flap design creates an interlocking flap-interface surface which potentially contributes toward flap stability. In addition, the FEMTO LDV Z8 offers flap-position adjustments after docking (before flap-creation). The current study analyzed precision, safety, efficacy, as well as patient self-reported pain and comfort levels after applying two different types of LASIK flap morphologies which were created with a low-energy, high-frequency femtosecond (fs) laser device. Methods: A prospective, interventional, randomized, contralateral eye, single-center comparison study was conducted from November 2019 to March 2020 at the Hamburg vision clinic/ zentrumsehstĂ€rke, Hamburg, Germany. Eleven patients and 22 eyes received low-energy fs LASIK treatment for myopia or myopic astigmatism in both eyes. Before the treatment, the eyes were randomized (one eye was treated with the 2D, the other eye with the 3D method). Results: The mean central flap thickness one month after surgery was 110.7 ± 1.6 ÎŒm (2D) and 111.2 ± 1.7 ÎŒm (3D); P = 0.365 (2D vs 3D). Flap thickness measured at 13 different points resulted in no statistically significant differences between any of the measurement points within/between both groups; demonstrating good planarity of the flap was achieved using both methods. Despite not being statistically significant, the surgeons recognized an increase in the presence of an opaque bubble layer in the 3D flap eyes during surgery and some patients reported higher, yet not statistically significant, pain scores in the 3D flap eyes during the first hours after the treatment. Overall, safety- and efficacy indices were 1.03 and 1.03, respectively. Conclusion: In this prospective, randomized, contralateral eye study, the low-energy fs laser yielded predictable lamellar flap thicknesses and geometry at one-month followup. Based on these results, efficacy and safety of the corresponding laser application, that is, 2D vs 3D, are equivalen

    Bilateral Crystalline Corneal Deposits as First Clinical Manifestation of Monoclonal Gammopathy: A Case Report

    Get PDF
    Aims: To report the clinical and diagnostic findings of a patient with bilateral corneal deposits caused by an underlying monoclonal gammopathy. Methods: Slit-lamp biomicroscopy, confocal microscopy and additional serological tests were performed on a 35-year-old man presenting with bilateral crystalline corneal deposits. Results: The patient was diagnosed as having monoclonal gammopathy based on elevated levels of serum immunoglobulin G. Confocal microscopy showed highly reflective (protein) deposits throughout the entire cornea, with the highest density in the epithelium and anterior stromal keratocytes. Conclusions: Monoclonal gammopathy, a potential sign of a life-threatening disease, can lead to dense, bilateral corneal deposits. As such changes can occur long before ocular or systemic discomforts appear, an early diagnosis is crucial. Ophthalmologists should be aware of corneal deposits as potential warning signs of monoclonal gammopathy

    Remote Ischemic Preconditioning Neither Improves Survival nor Reduces Myocardial or Kidney Injury in Patients Undergoing Transcatheter Aortic Valve Implantation (TAVI)

    Get PDF
    BACKGROUND: Peri-interventional myocardial injury occurs frequently during transcatheter aortic valve implantation (TAVI). We assessed the effect of remote ischemic preconditioning (RIPC) on myocardial injury, acute kidney injury (AKIN) and 6-month mortality in patients undergoing TAVI. METHODS: We performed a prospective single-center controlled trial. Sixty-six patients treated with RIPC prior to TAVI were enrolled in the study and were matched to a control group by propensity-score. RIPC was applied to the upper extremity using a conventional tourniquet. Myocardial injury was assessed using high-sensitive troponin-T (hsTnT), and kidney injury was assessed using serum creatinine levels. Data were compared with the Wilcoxon-Rank and McNemar tests. Mortality was analysed with the log-rank test. RESULTS: TAVI led to a significant rise of hsTnT across all patients (p < 0.001). No significant inter-group difference in maximum troponin release or areas-under-the-curve was detected. Medtronic CoreValve and Edwards Sapien valves showed similar peri-interventional troponin kinetics and patients receiving neither valve did benefit from RIPC. AKIN occurred in one RIPC patient and four non-RIPC patients (p = 0.250). No significant difference in 6-month mortality was observed. No adverse events related to RIPC were recorded. CONCLUSION: Our data do not show a beneficial role of RIPC in TAVI patients for cardio- or renoprotection, or improved survival

    Morphological characterization of the human corneal epithelium by in vivo confocal laser scanning microscopy

    Get PDF
    Background: Regarding the growing interest and importance of understanding the cellular changes of the cornea in diseases, a quantitative cellular characterization of the epithelium is becoming increasingly important. Towards this, the latest research offers considerable improvements in imaging of the cornea by confocal laser scanning microscopy (CLSM). This study presents a pipeline to generate normative morphological data of epithelial cell layers of healthy human corneas. Methods: 3D in vivo CLSM was performed on the eyes of volunteers (n=25) with a Heidelberg Retina Tomograph II equipped with an in-house modified version of the Rostock Cornea Module implementing two dedicated piezo actuators and a concave contact cap. Image data were acquired with nearly isotropic voxel resolution. After image registration, stacks of en-face sections were used to generate full-thickness volume data sets of the epithelium. Beyond that, an image analysis algorithm quantified en-face sections of epithelial cells regarding the depth-dependent mean of cell density, area, diameter, aggregation (Clark and Evans index of aggregation), neighbor count and polygonality. Results: Imaging and cell segmentation were successfully performed in all subjects. Thereby intermediated cells were efficiently recognized by the segmentation algorithm while efficiency for superficial and basal cells was reduced. Morphological parameters showed an increased mean cell density, decreased mean cell area and mean diameter from anterior to posterior (5,197.02 to 8,190.39 cells/mmÂČ; 160.51 to 90.29 ”mÂČ; 15.9 to 12.3 ”m respectively). Aggregation gradually increased from anterior to posterior ranging from 1.45 to 1.53. Average neighbor count increased from 5.50 to a maximum of 5.66 followed by a gradual decrease to 5.45 within the normalized depth from anterior to posterior. Polygonality gradually decreased ranging from 4.93 to 4.64 sides of cells. The neighbor count and polygonality parameters exhibited profound depth-dependent changes. Conclusions: This in vivo study demonstrates the successful implementation of a CLSM-based imaging pipeline for cellular characterization of the human corneal epithelium. The dedicated hardware in combination with an adapted image registration method to correct the remaining motion-induced image distortions followed by a dedicated algorithm to calculate characteristic quantities of different epithelial cell layers enabled the generation of normative data. Further significant effort is necessary to improve the algorithm for superficial and basal cell segmentation

    Mena/VASP and αII-Spectrin complexes regulate cytoplasmic actin networks in cardiomyocytes and protect from conduction abnormalities and dilated cardiomyopathy

    Get PDF
    BACKGROUND: In the heart, cytoplasmic actin networks are thought to have important roles in mechanical support, myofibrillogenesis, and ion channel function. However, subcellular localization of cytoplasmic actin isoforms and proteins involved in the modulation of the cytoplasmic actin networks are elusive. Mena and VASP are important regulators of actin dynamics. Due to the lethal phenotype of mice with combined deficiency in Mena and VASP, however, distinct cardiac roles of the proteins remain speculative. In the present study, we analyzed the physiological functions of Mena and VASP in the heart and also investigated the role of the proteins in the organization of cytoplasmic actin networks. RESULTS: We generated a mouse model, which simultaneously lacks Mena and VASP in the heart. Mena/VASP double-deficiency induced dilated cardiomyopathy and conduction abnormalities. In wild-type mice, Mena and VASP specifically interacted with a distinct αII-Spectrin splice variant (SH3i), which is in cardiomyocytes exclusively localized at Z- and intercalated discs. At Z- and intercalated discs, Mena and ÎČ-actin localized to the edges of the sarcomeres, where the thin filaments are anchored. In Mena/VASP double-deficient mice, ÎČ-actin networks were disrupted and the integrity of Z- and intercalated discs was markedly impaired. CONCLUSIONS: Together, our data suggest that Mena, VASP, and αII-Spectrin assemble cardiac multi-protein complexes, which regulate cytoplasmic actin networks. Conversely, Mena/VASP deficiency results in disrupted ÎČ-actin assembly, Z- and intercalated disc malformation, and induces dilated cardiomyopathy and conduction abnormalities

    Fluidaustritte an kollidierenden Plattengrenzen

    Get PDF
    Plate collision cuases expulsion of fluids and gases and material turnover in the deep ocean along the global subduction zones. Such cold vents are characterized by mineral precipitates and characteristic assemblages of macro organisms. The latter harbor symbiotic bacteria which utilize the chemically-reduced constituents (CH4 and H2S) of the expelled fluids as their energy and supply their host with food. The interaction between tectonically-induced fluid flow and pumping activity of the vent fauna sets up a shallow recirculation system whose magnitude can be estimated from direct measurements by an in situ vent sampling device (VESP) in connection with tracer studies. The dewatering rates based on the biogeochemical estimates agree surprisingly well with those derived from geophysical estimates

    A Unified Research Data Infrastructure for Catalysis Research – Challenges and Concepts

    Get PDF
    Modern research methods produce large amounts of scientifically valuable data. Tools to process and analyze such data have advanced rapidly. Yet, access to large amounts of high‐quality data remains limited in many fields, including catalysis research. Implementing the concept of FAIR data (Findable, Accessible, Interoperable, Reusable) in the catalysis community would improve this situation dramatically. The German NFDI initiative (National Research Data Infrastructure) aims to create a unique research data infrastructure covering all scientific disciplines. One of the consortia, NFDI4Cat, proposes a concept that serves all aspects and fields of catalysis research. We present a perspective on the challenging path ahead. Starting out from the current state, research needs are identified. A vision for a integrating all research data along the catalysis value chain, from molecule to chemical process, is developed. Respective core development topics are discussed, including ontologies, metadata, required infrastructure, IP, and the embedding into research community. This Concept paper aims to inspire not only researchers in the catalysis field, but to spark similar efforts also in other disciplines and on an international level.DFG, 441926934, NFDI4Cat – NFDI fĂŒr Wissenschaften mit Bezug zur Katalys
    • 

    corecore