1,055 research outputs found

    Design of an electron microscope phase plate using a focused continuous-wave laser

    Full text link
    We propose a Zernike phase contrast electron microscope that uses an intense laser focus to convert a phase image into a visible image. We present the relativistic quantum theory of the phase shift caused by the laser-electron-interaction, study resonant cavities for enhancing the laser intensity, and discuss applications in biology, soft materials science, and atomic and molecular physics.Comment: 5 pages, 3 figure

    A significant hardening and rising shape detected in the MeV/GeV nuFnu spectrum from the recently-discovered very-high-energy blazar S4 0954+65 during the bright optical flare in 2015 February

    Get PDF
    We report on Fermi Large Area Telescope (LAT) and multi-wavelength results on the recently-discovered very-high-energy (VHE, E>E> 100 GeV) blazar S4 0954+65 (z=0.368z=0.368) during an exceptionally bright optical flare in 2015 February. During the time period (2015 February, 13/14, or MJD 57067) when the MAGIC telescope detected VHE γ\gamma-ray emission from the source, the Fermi-LAT data indicated a significant spectral hardening at GeV energies, with a power-law photon index of 1.8±0.11.8 \pm 0.1---compared with the 3FGL value (averaged over four years of observation) of 2.34±0.042.34 \pm 0.04. In contrast, Swift/XRT data showed a softening of the X-ray spectrum, with a photon index of 1.72±0.081.72 \pm 0.08 (compared with 1.38±0.031.38 \pm 0.03 averaged during the flare from MJD 57066 to 57077), possibly indicating a modest contribution of synchrotron photons by the highest-energy electrons superposed on the inverse Compton component. Fitting of the quasi-simultaneous (<1<1 day) broadband spectrum with a one-zone synchrotron plus inverse-Compton model revealed that GeV/TeV emission could be produced by inverse-Compton scattering of external photons from the dust torus. We emphasize that a flaring blazar showing high flux of 1.0×106\gtrsim 1.0 \times 10^{-6} photons cm2^{-2} s1^{-1} (E>E> 100 MeV) and a hard spectral index of ΓGeV<2.0\Gamma_{\rm GeV} < 2.0 detected by Fermi-LAT on daily time scales is a promising target for TeV follow-up by ground-based Cherenkov telescopes to discover high-redshift blazars, investigate their temporal variability and spectral features in the VHE band, and also constrain the intensity of the extragalactic background light.Comment: 15 pages, 3 figures, 2 tables. Accepted by PAS

    Rayleigh Imaging of Graphene and Graphene Layers

    Get PDF
    We investigate graphene and graphene layers on different substrates by monochromatic and white-light confocal Rayleigh scattering microscopy. The image contrast depends sensitively on the dielectric properties of the sample as well as the substrate geometry and can be described quantitatively using the complex refractive index of bulk graphite. For few layers (<6) the monochromatic contrast increases linearly with thickness: the samples behave as a superposition of single sheets which act as independent two dimensional electron gases. Thus, Rayleigh imaging is a general, simple and quick tool to identify graphene layers, that is readily combined with Raman scattering, which provides structural identification.Comment: 8 pages, 9 figure

    AGILE observation of a gamma-ray flare from the blazar 3C 279

    Get PDF
    Context. We report the detection by the AGILE satellite of an intense gamma-ray flare from the gamma-ray source 3EG J1255-0549, associated to the Flat Spectrum Radio Quasar 3C 279, during the AGILE pointings towards the Virgo Region on 2007 July 9-13. Aims. The simultaneous optical, X-ray and gamma-ray covering allows us to study the spectral energy distribution (SED) and the theoretical models relative to the flaring episode of mid-July. Methods. AGILE observed the source during its Science Performance Verification Phase with its two co-aligned imagers: the Gamma- Ray Imaging Detector (GRID) and the hard X-ray imager (Super-AGILE) sensitive in the 30 MeV - 50 GeV and 18 - 60 keV respectively. During the AGILE observation the source was monitored simultaneously in optical band by the REM telescope and in the X-ray band by the Swift satellite through 4 ToO observations. Results. During 2007 July 9-13 July 2007, AGILE-GRID detected gamma-ray emission from 3C 279, with the source at ~2 deg from the center of the Field of View, with an average flux of (210+-38) 10^-8 ph cm^-2 s^-1 for energy above 100 MeV. No emission was detected by Super-AGILE, with a 3-sigma upper limit of 10 mCrab. During the observation lasted about 4 days no significative gamma-ray flux variation was observed. Conclusions. The Spectral Energy Distribution is modelled with a homogeneous one-zone Synchrotron Self Compton emission plus the contributions by external Compton scattering of direct disk radiation and, to a lesser extent, by external Compton scattering of photons from the Broad Line Region.Comment: Accepted for publication in Astronomy and Astrophysic

    The 72-Hour WEBT Microvariability Observation of Blazar S5 0716+714 in 2009

    Full text link
    Context. The international whole earth blazar telescope (WEBT) consortium planned and carried out three days of intensive micro-variability observations of S5 0716+714 from February 22, 2009 to February 25, 2009. This object was chosen due to its bright apparent magnitude range, its high declination, and its very large duty cycle for micro-variations. Aims. We report here on the long continuous optical micro-variability light curve of 0716+714 obtained during the multi-site observing campaign during which the Blazar showed almost constant variability over a 0.5 magnitude range. The resulting light curve is presented here for the first time. Observations from participating observatories were corrected for instrumental differences and combined to construct the overall smoothed light curve. Methods. Thirty-six observatories in sixteen countries participated in this continuous monitoring program and twenty of them submitted data for compilation into a continuous light curve. The light curve was analyzed using several techniques including Fourier transform, Wavelet and noise analysis techniques. Those results led us to model the light curve by attributing the variations to a series of synchrotron pulses. Results. We have interpreted the observed microvariations in this extended light curve in terms of a new model consisting of individual stochastic pulses due to cells in a turbulent jet which are energized by a passing shock and cool by means of synchrotron emission. We obtained an excellent fit to the 72-hour light curve with the synchrotron pulse model

    Another look at the BL Lacertae flux and spectral variability

    Get PDF
    The GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) monitored BL Lacertae in 2008-2009 at radio, near-IR, and optical frequencies. During this period, high-energy observations were performed by XMM-Newton, Swift, and Fermi. We analyse these data with particular attention to the calibration of Swift UV data, and apply a helical jet model to interpret the source broad-band variability. The GASP-WEBT observations show an optical flare in 2008 February-March, and oscillations of several tenths of mag on a few-day time scale afterwards. The radio flux is only mildly variable. The UV data from both XMM-Newton and Swift seem to confirm a UV excess that is likely caused by thermal emission from the accretion disc. The X-ray data from XMM-Newton indicate a strongly concave spectrum, as well as moderate flux variability on an hour time scale. The Swift X-ray data reveal fast (interday) flux changes, not correlated with those observed at lower energies. We compare the spectral energy distribution (SED) corresponding to the 2008 low-brightness state, which was characterised by a synchrotron dominance, to the 1997 outburst state, where the inverse-Compton emission was prevailing. A fit with an inhomogeneous helical jet model suggests that two synchrotron components are at work with their self inverse-Compton emission. Most likely, they represent the radiation from two distinct emitting regions in the jet. We show that the difference between the source SEDs in 2008 and 1997 can be explained in terms of pure geometrical variations. The outburst state occurred when the jet-emitting regions were better aligned with the line of sight, producing an increase of the Doppler beaming factor. Our analysis demonstrates that the jet geometry can play an extremely important role in the BL Lacertae flux and spectral variability.Comment: 12 pages, 10 figures, accepted for publication in A&

    Multiwavelength Evidence for Quasi-periodic Modulation in the Gamma-ray Blazar PG 1553+113

    Get PDF
    We report for the first time a gamma-ray and multi-wavelength nearly-periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope (LAT) we have discovered an apparent quasi-periodicity in the gamma-ray flux (E >100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18 +/-0.08 year-period gamma-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the OVRO, Tuorla, KAIT, and CSS monitoring programs and Swift UVOT. The optical cycle appearing in ~10 years of data has a similar period, while the 15 GHz oscillation is less regular than seen in the other bands. Further long-term multi-wavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity.Comment: 8 pages, 5 figures. Accepted to The Astrophysical Journal Letters. Corresponding authors: S. Ciprini (ASDC/INFN), S. Cutini (ASDC/INFN), S. Larsson (Stockholm Univ/KTH), A. Stamerra (INAF/SNS), D. J. Thompson (NASA GSFC

    Multifrequency monitoring of the blazar 0716+714 during the GASP-WEBT-AGILE campaign of 2007

    Full text link
    Since the CGRO operation in 1991-2000, one of the primary unresolved questions about the blazar gamma-ray emission has been its possible correlation with the low-energy (in particular optical) emission. To help answer this problem, the Whole Earth Blazar Telescope (WEBT) consortium has organized the GLAST-AGILE Support Program (GASP) to provide the optical-to-radio monitoring data to be compared with the gamma-ray detections by the AGILE and GLAST satellites. This new WEBT project started in early September 2007, just before a strong gamma-ray detection of 0716+714 by AGILE. We present the GASP-WEBT optical and radio light curves of this blazar obtained in July-November 2007, about various AGILE pointings at the source. We construct NIR-to-UV spectral energy distributions (SEDs), by assembling GASP-WEBT data together with UV data from the Swift ToO observations of late October. We observe a contemporaneous optical-radio outburst, which is a rare and interesting phenomenon in blazars. The shape of the SEDs during the outburst appears peculiarly wavy because of an optical excess and a UV drop-and-rise. The optical light curve is well sampled during the AGILE pointings, showing prominent and sharp flares. A future cross-correlation analysis of the optical and AGILE data will shed light on the expected relationship between these flares and the gamma-ray events.Comment: 5 pages, 5 figures, to be published in A&A (Letters); revised to match the final version (changes in Fig. 5 and related text

    Thioredoxin is involved in endothelial cell extracellular transglutaminase 2 activation mediated by celiac disease patient IgA

    Get PDF
    Purpose: To investigate the role of thioredoxin (TRX), a novel regulator of extracellular transglutaminase 2 (TG2), in celiac patients IgA (CD IgA) mediated TG2 enzymatic activation. Methods: TG2 enzymatic activity was evaluated in endothelial cells (HUVECs) under different experimental conditions by ELISA and Western blotting. Extracellular TG2 expression was studied by ELISA and immunofluorescence. TRX was analysed by Western blotting and ELISA. Serum immunoglobulins class A from healthy subjects (H IgA) were used as controls. Extracellular TG2 enzymatic activity was inhibited by R281. PX12, a TRX inhibitor, was also employed in the present study. Results: We have found that in HUVECs CD IgA is able to induce the activation of extracellular TG2 in a dose-dependent manner. Particularly, we noted that the extracellular modulation of TG2 activity mediated by CD IgA occurred only under reducing conditions, also needed to maintain antibody binding. Furthermore, CD IgA-treated HUVECs were characterized by a slightly augmented TG2 surface expression which was independent from extracellular TG2 activation. We also observed that HUVECs cultured in the presence of CD IgA evinced decreased TRX surface expression, coupled with increased secretion of the protein into the culture medium. Intriguingly, inhibition of TRX after CD IgA treatment was able to overcome most of the CD IgA-mediated effects including the TG2 extracellular transamidase activity. Conclusions: Altogether our findings suggest that in endothelial cells CD IgA mediate the constitutive activation of extracellular TG2 by a mechanism involving the redox sensor protein TRX
    corecore