240 research outputs found

    Globalization, Culture Wars, and Attitudes toward Soccer in America: An Empirical Assessment of How Soccer Explains the World

    Get PDF
    This study examines the “culture wars” using the lens of attitudes towards soccer. Despite soccer’s increasing popularity in the U.S., anti-soccer rhetoric is fairly common. In his widely read book, How Soccer Explains The World (2004), Foer contends that the “culture wars,” including divisions over soccer, are better explained by reactions to globalization than social class or political ideology. Using data from a survey of Nebraskans, we find that attitudes about cultural globalization are the best predictor of soccer sentiment. Contrary to popular claims about the “culture wars,” most respondents were moderate in their attitudes towards both soccer and globalization

    Chemical Species Spatial Distribution and Relationship to Elevation and Snow Accumulation Rate over the Greenland Ice Sheet

    Get PDF
    Major chemical species (Cl−, NO−3, SO2−4, Na+, K+, Mg2+, Ca2+) from 24 snowpits (sampled at a resolution of 3 cm, total 2995 samples) collected from northern, central, and southern Greenland were used for this investigation. The annual and seasonal (winter and summer) concentration of each chemical species was calculated and used to study the spatial distribution of chemical species over the central portion of the Greenland Ice Sheet. A two-sided t-distribution test (α=0.05) suggests that concentrations of major chemical species in snow do not vary significantly over this portion of central Greenland. The relationship between chemical concentration and snow accumulation rate was investigated using annual data from two groups of snowpits: those from coastal sites (northern and southern Greenland); and those from high-altitude inland sites (central Greenland). The snowpit data from a single group, when examined independently of the other group, show that chemical concentrations do not vary with snow accumulation rate. However, when data from the two groups are integrated into a single data set, pseudorelationships appear, with NO−3 concentration decreasing and Na+, K+, Mg2+, and Cl− increasing as snow accumulation rate increases. Therefore we suggest that it is improper to study the relationship between chemical concentration and snow accumulation rate by using data collected from different geographic sites. The relationship between elevation and chemical concentration was investigated using the same suite of annual data sets. We find that Cl−, Na+, and Mg2+ concentrations decrease, while NO−3 concentration increases, with increasing elevation on the Greenland Ice Sheet

    Overrating Bruins, Underrating Badgers: Media, Bias, and College Basketball

    Get PDF
    Why are some teams perennial darlings of sports journalists while other talented squads get overlooked? Each week during the NCAA basketball season, the Associated Press releases a ranked poll of the top 25 teams. By comparing the preseason and postseason rankings, we construct a measure of how much sports journalists who respond to the poll overrate (or underrate) college teams relative to their actual performance. Using this metric for the 115 NCAA schools that have appeared at least once in the opening or final AP poll in the last 25 years, we examine a range of institutional characteristics that may predict overrating or underrating by members of the sports media. A multilevel analysis reveals that recent performance in the NCAA tournament and the perceived quality of the most recent recruiting class are the strongest predictors of being consistently overrated. While no institutional characteristics had direct effects, the effect of tournament performance on overrating is greater for teams that have historically had fewer coaches and compete in a “power” conference, and for national research institutions with larger student bodies. Our findings have implications for understanding how complex decisions are made within a conservative social institution (the media) and suggest that some schools may receive advantages in media exposure and financial opportunity

    Optical Time-Series Photometry of the Symbiotic Nova V1835 Aquilae

    Full text link
    We present time-series CCD photometry in the BVRIBVRI passbands of the recently identified symbiotic nova V1835 Aquilae (NSV 11749) over an interval of 5.1 years with 7-14 day cadence, observed during its quiescence. We find slow light variations with a range of \sim0.9 mag in VV and \sim0.3 mag in II. Analysis of these data show strong periodicity at 419±10419 \pm 10 days, which we interpret to be the system's orbital period. A dip in the otherwise-sinusoidal phased light curve suggests a weak ellipsoidal effect due to tidal distortion of the giant star, which in turn opens the possibility that V1835 Aql transfers some of its mass to the hot component via Roche lobe overflow rather than via a stellar wind. We also find evidence that V1835 Aql is an S-type symbiotic star, relatively free of circumstellar dust, and include it among the nuclear burning group of symbiotics. Finally, we provide photometry, periods, and light curve classifications for 22 variable stars in the field around V1835 Aql, about half of which are newly identified.Comment: Main Paper: 28 pages, 5 figures, 5 tables. Supplement: 15 pages, 4 figures, 1 table. To be published in Publications of the Astronomical Society of the Pacifi

    Canine Hereditary Ataxia in Old English Sheepdogs and Gordon Setters Is Associated with a Defect in the Autophagy Gene Encoding RAB24

    Get PDF
    Old English Sheepdogs and Gordon Setters suffer from a juvenile onset, autosomal recessive form of canine hereditary ataxia primarily affecting the Purkinje neuron of the cerebellar cortex. The clinical and histological characteristics are analogous to hereditary ataxias in humans. Linkage and genome-wide association studies on a cohort of related Old English Sheepdogs identified a region on CFA4 strongly associated with the disease phenotype. Targeted sequence capture and next generation sequencing of the region identified an A to C single nucleotide polymorphism (SNP) located at position 113 in exon 1 of an autophagy gene, RAB24, that segregated with the phenotype. Genotyping of six additional breeds of dogs affected with hereditary ataxia identified the same polymorphism in affected Gordon Setters that segregated perfectly with phenotype. The other breeds tested did not have the polymorphism. Genome-wide SNP genotyping of Gordon Setters identified a 1.9 MB region with an identical haplotype to affected Old English Sheepdogs. Histopathology, immunohistochemistry and ultrastructural evaluation of the brains of affected dogs from both breeds identified dramatic Purkinje neuron loss with axonal spheroids, accumulation of autophagosomes, ubiquitin positive inclusions and a diffuse increase in cytoplasmic neuronal ubiquitin staining. These findings recapitulate the changes reported in mice with induced neuron-specific autophagy defects. Taken together, our results suggest that a defect in RAB24, a gene associated with autophagy, is highly associated with and may contribute to canine hereditary ataxia in Old English Sheepdogs and Gordon Setters. This finding suggests that detailed investigation of autophagy pathways should be undertaken in human hereditary ataxia.American Kennel Club Canine Health Foundation (grant CHF 0407)American Kennel Club Canine Health Foundation (grant CHF 0925)Old English Sheepdog Club of AmericaTarTan Gordon Setter ClubEuropean Science Foundation (EURYI)Canine Health Information Center (DNA Repository

    Accelerated evolution of SARS-CoV-2 in free-ranging white-tailed deer

    Get PDF
    The zoonotic origin of the COVID-19 pandemic virus highlights the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected that SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 2021-March 2022. Subsequently, deer-to-deer transmission persisted for 2–8 months, disseminating across hundreds of kilometers. Newly developed Bayesian phylogenetic methods quantified how SARS-CoV-2 evolution is not only three-times faster in white-tailed deer compared to the rate observed in humans but also driven by different mutational biases and selection pressures. The long-term effect of this accelerated evolutionary rate remains to be seen as no critical phenotypic changes were observed in our animal models using white-tailed deer origin viruses. Still, SARS-CoV-2 has transmitted in white-tailed deer populations for a relatively short duration, and the risk of future changes may have serious consequences for humans and livestock

    Mechanisms Promoting the Long-Term Persistence of a Wolbachia Infection in a Laboratory-Adapted Population of Drosophila melanogaster

    Get PDF
    Intracellular bacteria of the genus Wolbachia are widespread endosymbionts across diverse insect taxa. Despite this prevalence, our understanding of how Wolbachia persists within populations is not well understood. Cytoplasmic incompatibility (CI) appears to be an important phenotype maintaining Wolbachia in many insects, but it is believed to be too weak to maintain Wolbachia in Drosophila melanogaster, suggesting that Wolbachia must also have other effects on this species. Here we estimate the net selective effect of Wolbachia on its host in a laboratory-adapted population of D. melanogaster, to determine the mechanisms leading to its persistence in the laboratory environment. We found i) no significant effects of Wolbachia infection on female egg-to-adult survival or adult fitness, ii) no reduced juvenile survival in males, iii) substantial levels of CI, and iv) a vertical transmission rate of Wolbachia higher than 99%. The fitness of cured females was, however, severely reduced (a decline of 37%) due to CI in offspring. Taken together these findings indicate that Wolbachia is maintained in our laboratory environment due to a combination of a nearly perfect transmission rate and substantial CI. Our results show that there would be strong selection against females losing their infection and producing progeny free from Wolbachia

    A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    Get PDF
    Rising atmospheric [CO2 ], ca , is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2 ], ci , a constant drawdown in CO2 (ca - ci ), and a constant ci /ca . These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca . The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca . To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ(13) C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca -induced changes in ci /ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca - ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization towards any single strategy, particularly maintaining a constant ci . Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca , when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca , when photosystems are saturated and water loss is large for each unit C gain. This article is protected by copyright. All rights reserved.Rising atmospheric [CO2], c(a), is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2], c(i), a constant drawdown in CO2 (c(a)-c(i)), and a constant c(i)/c(a). These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying c(a). The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to c(a). To assess leaf gas-exchange regulation strategies, we analyzed patterns in c(i) inferred from studies reporting C stable isotope ratios (C-13) or photosynthetic discrimination () in woody angiosperms and gymnosperms that grew across a range of c(a) spanning at least 100ppm. Our results suggest that much of the c(a)-induced changes in c(i)/c(a) occurred across c(a) spanning 200 to 400ppm. These patterns imply that c(a)-c(i) will eventually approach a constant level at high c(a) because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant c(i). Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low c(a), when additional water loss is small for each unit of C gain, and increasingly water-conservative at high c(a), when photosystems are saturated and water loss is large for each unit C gain
    corecore