176 research outputs found

    Resilience and stability of a pelagic marine ecosystem

    Get PDF
    The accelerating loss of biodiversity and ecosystem services worldwide has accentuated a long-standing debate on the role of diversity in stabilizing ecological communities and has given rise to a field of research on biodiversity and ecosystem functioning (BEF). Although broad consensus has been reached regarding the positive BEF relationship, a number of important challenges remain unanswered. These primarily concern the underlying mechanisms by which diversity increases resilience and community stability, particularly the relative importance of statistical averaging and functional complementarity. Our understanding of these mechanisms relies heavily on theoretical and experimental studies, yet the degree to which theory adequately explains the dynamics and stability of natural ecosystems is largely unknown, especially in marine ecosystems. Using modelling and a unique 60-year dataset covering multiple trophic levels, we show that the pronounced multi-decadal variability of the Southern California Current System (SCCS) does not represent fundamental changes in ecosystem functioning, but a linear response to key environmental drivers channelled through bottom-up and physical control. Furthermore, we show strong temporal asynchrony between key species or functional groups within multiple trophic levels caused by opposite responses to these drivers. We argue that functional complementarity is the primary mechanism reducing community variability and promoting resilience and stability in the SCCS

    Beauty is in the eye of the beholder: Management of Baltic cod stock requires an ecosystem approach

    No full text
    In a recent 'As We See It' article, Cardinale & Svedang (2011; Mar Ecol Prog Ser 425:297-301) used the example of the Eastern Baltic (EB) cod stock to argue that the concept of ecosystem regime shifts, especially the potential existence of alternative stable states (or dynamic regimes), blurs the fact that human exploitation (i.e. fishing) is the strongest impact on marine ecosystems. They further concluded that single-species approaches to resource management are functioning and that ecosystem-based approaches are not necessary. We (1) argue that the recent increase in the EB cod stock is inherently uncertain, (2) discuss the critique of the regime shift concept, and (3) describe why the EB cod stock dynamics demonstrates the need for an ecosystem approach to fisheries management

    Regeneration potential of the Baltic Sea inferred from historical records

    Get PDF
    Overfishing of large predatory fish populations has resulted in lasting restructurings of entire marine food webs worldwide, with potential immense socio-economic consequences. Fortunately, some degraded ecosystems have started to show signs of regeneration. A key challenge for resource management is to anticipate the degree to which regeneration is possible, given the multiple threats ecosystems face. Here, we show that under current hydroclimatic conditions, complete regeneration of a heavily altered ecosystem –the Baltic Sea as case study– would not be possible. Instead, as the ecosystem regenerates it moves towards a new ecological baseline. This new baseline is characterized by lower and more variable biomass of the commercially important Atlantic cod, even under very low exploitation rates. Consequently, societal costs increase due to higher risk premium caused by increased uncertainty in biomass and reduced consumer surplus. Specifically, the combined economic losses amount to about 120 million € per year, which equals half of today’s maximum economic yield for the Baltic cod fishery. Our analyses suggest that shifts in ecological and economic baselines, in combination with increased biomass variability, lead to higher economic uncertainty and costs for exploited ecosystems, in particular under climate change.Kiel Cluster of Excellence 'Future Ocean

    Demersal fish biomass declines with temperature across productive shelf seas

    Get PDF
    Aim: Theory predicts fish community biomass to decline with increasing temperature due to higher metabolic losses resulting in less efficient energy transfer in warm-water food webs. However, whether these metabolic predictions explain observed macroecological patterns in fish community biomass is virtually unknown. Here, we test these predictions by examining the variation in demersal fish biomass across productive shelf regions. Location: Twenty one continental shelf regions in the North Atlantic and Northeast Pacific. Time Period: 1980-2015. Methods: We compiled high-resolution bottom trawl survey data of fish biomass containing 166,000 unique tows and corrected biomass for differences in sampling area and trawl gear catchability. We examined whether relationships between net primary production and demersal fish community biomass are mediated by temperature, food-web structure and the level of fishing exploitation, as well as the choice of spatial scale of the analysis. Subsequently, we examined if temperature explains regional changes in fish biomass over time under recent warming. Results: We find that biomass per km2 varies 40-fold across regions and is highest in cold waters and areas with low fishing exploitation. We find no evidence that temperature change has impacted biomass within marine regions over the time period considered. The biomass variation is best explained by an elementary trophodynamic model that accounts for temperature-dependent trophic efficiency. Main Conclusions: Our study supports the hypothesis that temperature is a main driver of large-scale cross-regional variation in fish community biomass. The cross-regional pattern suggests that long-term impacts of warming will be negative on biomass. These results provide an empirical basis for predicting future changes in fish community biomass and its associated services for human wellbeing that is food provisioning, under global climate change

    Climate-mediated changes in marine ecosystem regulation during El Niño

    Get PDF
    The degree to which ecosystems are regulated through bottom-up, top-down, or direct physical processes represents a long-standing issue in ecology, with important consequences for resource management and conservation. In marine ecosystems, the role of bottom-up and top-down forcing has been shown to vary over spatio-temporal scales, often linked to highly variable and heterogeneously distributed environmental conditions. Ecosystem dynamics in the Northeast Pacific have been suggested to be predominately bottom-up regulated. However, it remains unknown to what extent top-down regulation occurs, or whether the relative importance of bottom-up and top-down forcing may shift in response to climate change. In this study, we investigate the effects and relative importance of bottom-up, top-down, and physical forcing during changing climate conditions on ecosystem regulation in the Southern California Current System (SCCS) using a generalized food web model. This statistical approach is based on nonlinear threshold models and a long-term data set (~60 years) covering multiple trophic levels from phytoplankton to predatory fish. We found bottom-up control to be the primary mode of ecosystem regulation. However, our results also demonstrate an alternative mode of regulation represented by interacting bottom-up and top-down forcing, analogous to wasp-waist dynamics, but occurring across multiple trophic levels and only during periods of reduced bottom-up forcing (i.e., weak upwelling, low nutrient concentrations, and primary production). The shifts in ecosystem regulation are caused by changes in ocean-atmosphere forcing and triggered by highly variable climate conditions associated with El Niño. Furthermore, we show that biota respond differently to major El Niño events during positive or negative phases of the Pacific Decadal Oscillation (PDO), as well as highlight potential concerns for marine and fisheries management by demonstrating increased sensitivity of pelagic fish to exploitation during El Niño

    The Mass of the Milky Way: Limits from a Newly Assembled Set of Halo Objects

    Full text link
    We set new limits on the mass of the Milky Way, making use of the latest kinematic information for Galactic satellites and halo objects. In order to bind these sample objects to the Galaxy, their rest-frame velocities must be lower than their escape velocities at their estimated distances. This constraint enables us to show that the mass estimate of the Galaxy is largely affected by several high-velocity objects (Leo I, Pal 3, Draco, and a few FHB stars), not by a single object alone (such as Leo I), as has often been the case in past analyses. We also find that a gravitational potential that gives rise to a declining rotation curve is insufficient to bind many of our sample objects to the Galaxy; a possible lower limit on the mass of the Galaxy is about 2.2 x 10^12 Msolar. To be more quantitative, we adopt a Bayesian likelihood approach to reproduce the observed distribution of the current positions and motions of the sample, in a prescribed Galactic potential that yields a flat rotation curve. This method enables a search for the most likely total mass of the Galaxy, without undue influence in the final result arising from the presence or absence of Leo I, provided that both radial velocities and proper motions are used. The most likely total mass derived from this method is 2.5^+0.5_-1.0 x 10^12 Msolar (including Leo I), and 1.8^+0.4_-0.7 x 10^12 Msolar (excluding Leo I).Comment: 14 pages, including 9 figures and 3 tables, accepted for publication in Astronomy and Astrophysic

    A study of the remarkable galaxy system AM 546-324 (the core of Abell S0546)

    Full text link
    We report first results of an investigation of the tidally disturbed galaxy system AM\,546-324, whose two principal galaxies 2MFGC 04711 and AM\,0546-324 (NED02) were previously classified as interacting doubles. This system was selected to study the interaction of ellipticals in a moderately dense environment. We provide spectral characteristics of the system and present an observational study of the interaction effects on the morphology, kinematics, and stellar population of these galaxies. The study is based on long-slit spectrophotometric data in the range of ∼\sim 4500-8000 A˚\AA obtained with the Gemini Multi-Object Spetrograph at Gemini South (GMOS-S). We have used the stellar population synthesis code STARLIGHT to investigate the star formation history of these galaxies. The Gemini/GMOS-S direct r-G0303 broad band pointing image was used to enhance and study fine morphological structures. The main absorption lines in the spectra were used to determine the radial velocity. Along the whole long-slit signal, the spectra of the Shadowy galaxy (discovered by us), 2MFGC 04711, and AM\,0546-324 (NED02) resemble that of an early-type galaxy. We estimated redshifts of z= 0.0696, z= 0.0693 and z= 0.0718, corresponding to heliocentric velocities of 20\,141 km s−1^{-1}, 20\,057 km s−1^{-1}, and 20\,754 km s−1^{-1} for the Shadowy galaxy, 2MFGC 04711 and AM\,0546-324 (NED02), respectively. ..
    • …
    corecore