66 research outputs found

    Insect-based diets high in lauric acid reduce liver lipids in freshwater Atlantic salmon

    Get PDF
    We evaluated the effect of a diet containing insect meal and insect oil on nutrient utilization, tissue fatty acid profile and lipid metabolism of freshwater Atlantic salmon (Salmo salar). Insect meal and insect oil from black soldier fly larvae (Hermetia illucens, L.; BSF), naturally high in lauric acid (12:0), were used to produce five experimental diets for an eight‐week feeding trial. 85% of the dietary protein was replaced by insect meal and/or all the vegetable oil was replaced by one of two types of insect oil. A typical industrial diet, with protein from fishmeal and soy protein concentrate (50:50) and lipids from fish oil and vegetable oil (33:66), was fed to a control group. The dietary BSF larvae did not modify feed intake or whole body lipid content. Despite the high content of saturated fatty acids in the insect‐based diets, the apparent digestibility coefficients of all fatty acids were high. There was a decrease in liver triacylglycerols of salmon fed the insect‐based diets compared to the fish fed the control diet. This is likely due to the rapid oxidation and low deposition of the medium‐chain fatty acid lauric acid.publishedVersio

    Impact of dietary level and ratio of n-6 and n-3 fatty acids on disease progression and mRNA expression of immune and inflammatory markers in Atlantic salmon (Salmo salar) challenged with Paramoeba perurans

    Get PDF
    The aim of the study was to investigate the influence of dietary level and ratio of n-6/n-3 fatty acids (FA) on growth, disease progression and expression of immune and inflammatory markers in Atlantic salmon (Salmo salar) following challenge with Paramoeba perurans. Fish (80 g) were fed four different diets with different ratios of n-6/n-3 FA; at 1.3, 2.4 and 6.0 and one diet with ratio of 1.3 combined with a higher level of n-3 FA and n-6 FA. The diet with the n-6/n-3 FA ratio of 6.0 was included to ensure potential n-6 FA effects were revealed, while the three other diets were more commercially relevant n-6/n-3 FA ratios and levels. After a pre-feeding period of 3 months, fish from each diet regime were challenged with a standardized laboratory challenge using a clonal culture of P. perurans at the concentration of 1,000 cells L−1. The subsequent development of the disease was monitored (by gross gill score), and sampling conducted before challenge and at weekly sampling points for 5 weeks post-challenge. Challenge with P. perurans did not have a significant impact on the growth of the fish during the challenge period, but fish given the feed with the highest n-6/n-3 FA ratio had reduced growth compared to the other groups. Total gill score for all surfaces showed a significant increase with time, reaching a maximum at 21 days post-challenge and declined thereafter, irrespective of diet groups. Challenge with P. perurans influenced the mRNA expression of examined genes involved in immune and inflammatory response (TNF-α, iNOS, IL4-13b, GATA-3, IL-1β, p53, COX2 and PGE2-EP4), but diet did not influence the gene expression. In conclusion, an increase in dietary n-6/n-3 FA ratio influenced the growth of Atlantic salmon challenged with P. perurans; however, it did not alter the mRNA expression of immune genes or progression of the disease.publishedVersio

    The chemical composition of two seaweed flies (Coelopa frigida and Coelopa pilipes) reared in the laboratory

    Get PDF
    Two species of seaweed flies, Coelopa frigida and Coelopa pilipes, were reared in the laboratory and their larvae were sampled for composition of amino acids, fatty acids and elements. The larvae were grown on two different species of seaweed, Laminaria digitata and Fucus serratus. The aim was to gain knowledge on the influence of feeding media on the growth and composition of the larvae. Fucus serratus was more nutrient-dense than L. digitata, being richer in both protein and lipids, and thus led to ~70 % higher larvae growth. The larvae grown on F. serratus also had higher lipid and protein content than the larvae grown on L. digitata; F. serratus-grown larvae had ~8-9 % protein and ~18 % lipid (total fatty acids) (both values of dry matter), while the larvae grown on L. digitata had only ~7.5 % protein and ~13 % lipids. All seaweed flies had a similar and balanced amino acid composition, suitable for animal and human nutrition. The fatty acid composition was not highly affected by either insect species or feeding media, with all groups containing high concentrations of the monounsaturated fatty acid, palmitoleic acid (16:1n-7). The larvae also contained some fatty acids characteristic of marine environments, like eicosapentaenoic acid (20:5n-3), likely originating from the seaweed. Both species of seaweed fly larvae accumulated As, Cd, and Pb, but not Hg. The elevated levels of As and Cd in the larvae (highest measured concentrations 18.4 and 11.6 mg/kg, respectively, based on 12% moisture content) could potentially limit the use of seaweed fly larvae as a feed ingredient

    Increasing the dietary n-6/n-3 ratio alters the hepatic eicosanoid production after acute stress in Atlantic salmon (Salmo salar)

    Get PDF
    Earlier studies have indicated that a high inclusion of n-6 fatty acids (FA) in feeds for Atlantic salmon can affect the stress response. To test this hypothesis, Atlantic salmon (Salmo salar) were fed diets containing varying dietary n-6/n-3 FA ratios and different absolute levels of n-6 and n-3 FAs. The fish were divided into two different stress challenge groups, where one group was exposed to three weekly hypoxia challenges for 4 weeks (repeated stress), while one group was left undisturbed. At the end of the experiment, both groups were exposed to an acute stressor (lowering of water level). Thus, effects of the diets on acute stress, repeated stress and the combined effect of these could be investigated. In general, there were few effects of the repeated stress, while fish in all diet groups responded strongly to the acute stress based on several stress markers. Dietary n-6/n-3 ratio did not affect growth, all fish appeared phenotypically healthy, and all groups were able to mount an acute stress response. However, there was an interaction between diet and repeated stress on cortisol response after acute stress, possibly indicating altered hypothalamic-pituitary adrenal axis reactivity in fish fed high n-6/n-3 FA ratio. Hepatic levels of prostaglandin D2 (PGD2) and leukotriene B4 responded differently to acute stress depending on the dietary n-6/n3 FA ratio, indicating an altered acute stress response. Additionally, increasing the dietary n-6/n-3 FA content led to higher levels of PGD2 and PGE2 as well as higher liver triacylglycerol. In summary, the results suggest that increasing the dietary n-6/n-3 FA ratio in salmon feeds can affect the way they respond to stressors in an aquaculture setting, possibly affecting the fish robustness.publishedVersio

    Effect of dietary replacement of fish meal with insect meal on in vitro bacterial and viral induced gene response in Atlantic salmon (Salmo salar) head kidney leukocytes

    Get PDF
    Abstract With the fast growth of today's aquaculture industry, the demand for aquafeeds is expanding dramatically. Insects, which are part of the natural diet of salmonids, could represent a sustainable ingredient for aquaculture feed. The aim of the current study was to test how a partial or total replacement of dietary fishmeal with insect meal affect gene responses involved in inflammation, the eicosanoid pathway and stress response in Atlantic salmon (Salmo salar L.) in isolated head kidney leukocytes after exposure to bacterial or viral mimic. Insect meal (IM) was produced from black soldier fly (BSF, Hermetia illucens) larvae. Seawater Atlantic salmon were fed three different diets for 8 weeks; a control diet (IM0, protein from fishmeal and plant based ingredients (25:75) and lipid from fish oil and vegetable oil (33:66); and two insect-meal containing diets, IM66 and IM100, where 66 and 100% of the fishmeal protein was replaced with IM, respectively. Leukocytes were isolated from the head kidney of fish (n = 6) from each of the three dietary groups. Isolated leukocytes were seeded into culture wells and added either a bacterial mimic (lipopolysaccharide, LPS) or a viral mimic (polyinosinic acid: polycytidylic acid, poly I: C) to induce an inflammatory response. Controls (Ctl) without LPS and poly I: C were included. The transcription of interleukins IL-1β, IL-8, IL-10 and TNF-α were elevated in LPS treated leukocytes isolated from salmon fed the three dietary groups (IM0, IM66 and IM100). The inflammatory-related gene expression in head kidney cells were, however, not affected by the pre-fed substitution of fish meal with IM in the diet of salmon. Gene transcriptions of PTGDS and PTGES were neither affected by LPS, poly I: C or the experimental diets fed prior to cell isolation, while salmon fed with IM showed a lower expression of LOX5. The gene expression of TLR22 and C/EBP-β were down-regulated by the LPS treatment in the cells isolated from salmon fed insect-based diets (IM66 and IM100) compared to fish fed the IM0. Similarly, the leukocytes challenged with LPS and isolated from fish fed with IM66 and IM100 down-regulated the expression of Mn-SOD, GPx1, HSP27 and HSP70 compared to salmon fed IM0. In general, these results suggested that replacement of fishmeal with IM in the diets of Atlantic salmon had no effect on the transcription of pro-inflammatory genes in the head kidney cells. There was, however, an effect of dietary IM on the transcription of antioxidant and stress related genes in the leukocytes

    Potential of insect-based diets for Atlantic salmon (Salmo salar)

    Get PDF
    In the present study, we aimed to assess the effect of dietary insect meal (IM) and insect oil (IO) on growth performance, body composition and nutrient digestibility of freshwater reared Atlantic salmon. The IM and IO were produced from black soldier fly larvae (Hermetia illucens, L.; BSF) that had been grown on (1) media containing organic waste streams, or on (2) media partially containing seaweed (Ascophyllum nodosum). The feeding trial of the current study followed a factorial 2 × 3 way-ANOVA experimental design with six dietary groups of Atlantic salmon fed diets with insect-derived ingredients for 8 weeks. A typical industrial diet, with protein from fish meal and soy protein concentrate (SPC) (50:50) and lipids from fish oil and vegetable oil (33:66), was fed to a positive control group. Five experimental diets were formulated, where 85% of the dietary protein was replaced by IM and/or all the vegetable oil was replaced by IO (IM from insects grown on media 1, IO from insects grown on either media 1 (IO1) or media 2 (IO2)). Replacing the dietary fish meal and SPC with insect protein significantly reduced the apparent digestibility coefficients (ADC) of protein, lipid and all amino acids investigated, though remained highly digestible. There were, however, only small differences due to protein or lipid source in growth performance, and no effects of insect ingredients on feed intake or feed conversion ratio. Inclusion of IM-based diets significantly increased both hepatosomatic index and visceral somatic index of Atlantic salmon. Proteinase activity in the intestine was not affected by dietary inclusion of BSF larvae meal, while leucine aminopeptidase activity was lower in fish fed with insect ingredients than the control group. Whole-body protein, lipid, amino acids and minerals contents were not affected by protein or lipid source. In general, this study showed that protein meal and oil from BSF larvae hold a great potential as a source of nutrients for Atlantic salmon.publishedVersio

    A meta-analysis on the nutritional value of insects in aquafeeds

    Get PDF
    A major challenge for development of sustainable aquafeeds is its dependence on fish meal and fish oil. Similarly, it is unwanted to include more plant ingredients which adds more pressure on resources like arable land, freshwater and fertilisers. New ingredients that do not require these resources but rather refine and valorise organic side streams, like insects, are being developed. Increasing evidence indicates that using insect ingredients in aquafeeds are a sustainable alternative and considerable progress has been made on this topic in the past years. The aim of this chapter is to present a comprehensive and systematic analysis of the data available on the impact of insects in aquafeeds. Systematic search, collection and selection of relevant literature from databases such as Web of Science and NCBI was performed. The literature search enabled 91 scientific papers from peer-reviewed journals, comprising a dataset of 415 experimental diets, including 35 different aquatic species and 14 insect species to be included in this meta-analysis, covering what we consider a close to complete representation of credible publications on this topic. Information on aquatic species, insect species, dietary composition (amino acids, fatty acids, proximate composition) and performance outputs (growth performance indicators and nutrient digestibility) were included in the construction of the dataset. Regression models and principal component analyses were performed on the meta-data. The results from the meta-analysis revealed a great degree of variation in the maximum threshold for insect inclusion in aquafeeds (from 4 to 37%) based on subgroups of trophic level of aquatic species, insect species used, statistical method and the output parameter. Overall, a maximum threshold of 25-30% inclusion of insects in aquafeeds for uncompromised performance is suggested. Reduction in protein digestibility, imbalanced amino acid profile and increasing levels of saturated fatty acid were identified as major factors limiting higher inclusion of insects in aquafeeds.publishedVersio

    Chemical characterization of 21 species of marine macroalgae common in Norwegian waters: benefits of and limitations to their potential use in food and feed

    Get PDF
    BACKGROUND: In the past few years, much effort has been invested into developing a new blue economy based on harvesting, cultivating and processing marine macroalgae in Norway. Macroalgae have high potential for a wide range of applications, e.g. as source of pharmaceuticals, production of biofuels or as food and feed. However, data on the chemical composition of macroalgae from Norwegian waters are scant. This study was designed to characterize the chemical composition of 21 algal species. Both macro- and micronutrients were analysed. Concentrations of heavy metals and the metalloid arsenic in the algae were also quantified. RESULTS: The results confirm that marine macroalgae contain nutrients which are relevant for both human and animal nutrition, the concentrations whereof are highly dependent on species. Although heavy metals and arsenic were detected in the algae studied, concentrations were mostly below maximum allowed levels set by food and feed legislation in the EU. CONCLUSION: This study provides chemical data on a wide range of algal species covering the three taxonomic groups (brown, red and green algae) and discusses both benefits of and potential limitations to their use for food and feed purposes.Chemical characterization of 21 species of marine macroalgae common in Norwegian waters: benefits of and limitations to their potential use in food and feedpublishedVersio

    A Piece of the Puzzle-Possible Mechanisms for Why Low Dietary EPA and DHA Cause Hepatic Lipid Accumulation in Atlantic Salmon (Salmo salar)

    Get PDF
    The present study aimed at elucidating the effects of graded levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the hepatic metabolic health of Atlantic salmon reared in sea cages. Diets containing 10, 13, 16 and 35 g/kg EPA + DHA (designated diets 1.0, 1.3, 1.6 and 3.5, respectively) were fed in triplicate through a full production cycle from an average starting weight of 275 g to slaughter size (~5 kg). Feeding low dietary EPA + DHA altered the hepatic energy metabolism, evidenced by reductions in tricarboxylic acid cycle intermediates originating from β-oxidation, which was compensated by elevated activity in alternative energy pathways (pentose phosphate pathway, branched chain amino acid catabolism and creatine metabolism). Increases in various acylcarnitines in the liver supported this and indicates issues with lipid metabolism (mitochondrial β-oxidation). Problems using lipids for energy in the lower EPA + DHA groups line up well with observed increases in liver lipids in these fish. It also aligns with the growth data, where fish fed the highest EPA + DHA grew better than the other groups. The study showed that diets 1.0 and 1.3 were insufficient for maintaining good liver metabolic health. However, diet 3.5 was significantly better than diet 1.6, indicating that diet 1.6 might also be suboptimal

    A Single Meal Containing Phytosterols Does Not Affect the Uptake or Tissue Distribution of Cholesterol in Zebrafish (Danio rerio)

    Get PDF
    Increased plant oil inclusion in aquaculture feeds has led to higher dietary phytosterol concentrations and speculation about whether this affects the metabolism and health of the fish. The mechanisms of cholesterol absorption and how phytosterols may affect this is unknown in fish. Zebrafish (Danio rerio) were used to study the effects of phytosterols on the uptake and organ distribution of dietary cholesterol in fish. One meal of diets containing a constant addition of cholesterol (cold and [4-14C] cholesterol) and varying types and concentrations of phytosterols were fed to fish in individual compartments. The fish were not previously conditioned on the experimental diets. Activity of 14C was then measured in water and fish tissues to quantify the tissue distribution and excretion of cholesterol. There were no effects of the moderate dietary concentrations of phytosterols on the excretion or tissue distribution of dietary cholesterol 24 h after the meal
    • …
    corecore