107 research outputs found

    The Effects of Electric Power Lines on the Breeding Ecology of Greater Sage-Grouse

    Get PDF
    Anthropogenic infrastructure can negatively affect wildlife through direct mortality and/or displacement behaviors. Some tetranoids (grouse spp.) species are particularly vulnerable to tall anthropogenic structures because they evolved in ecosystems void of vertical structures. In western North America, electric power transmission and distribution lines (power lines) occur in sagebrush (Artemisia spp.) landscapes within the range of the greater sage-grouse (Centrocercus urophasianus; sage-grouse). The U.S. Fish and Wildlife Service recommended using buffer zones near leks to mitigate the potential impacts of power lines on sage-grouse. However, recommended buffer distances are inconsistent across state and federal agencies because data are lacking. To address this, we evaluated the effects of power lines on sage-grouse breeding ecology within Utah, portions of southeastern Idaho, and southwestern Wyoming from 1998–2013. Overall, power lines negatively affected lek trends up to a distance of 2.7 and 2.8 km, respectively. Power lines died not affect lek persistence. Female sage-grouse avoided transmission lines during the nesting and brooding seasons at distances up to 1.1 and 0.8 km, respectively. Nest and brood success were negatively affected by transmission lines up to distances of 2.6 and 1.1 km, respectively. Distribution lines did not appear to affect sage-grouse habitat selection or reproductive fitness. Our analyses demonstrated the value of sagebrush cover in mitigating potential power line impacts. Managers can minimize the effects of new transmission power lines by placing them in existing anthropogenic corridors and/or incorporating buffers at least 2.8 km from active leks. Given the uncertainty we observed in our analyses regarding sage-grouse response to distribution lines coupled with their role in providing electric power service directly to individual consumers, we recommend that buffers for these power lines be considered on a case-by-case basis. Micrositing to avoid important habitats and habitat reclamation may reduce the potential impacts of new power line construction

    Comparison of TNFα to Lipopolysaccharide as an Inflammagen to Characterize the Idiosyncratic Hepatotoxicity Potential of Drugs: Trovafloxacin as an Example

    Get PDF
    Idiosyncratic drug reactions (IDRs) are poorly understood, unpredictable, and not detected in preclinical studies. Although the cause of these reactions is likely multi-factorial, one hypothesis is that an underlying inflammatory state lowers the tolerance to a xenobiotic. Previously used in an inflammation IDR model, bacterial lipopolysaccharide (LPS) is heterogeneous in nature, making development of standardized testing protocols difficult. Here, the use of rat tumor necrosis factor-α (TNFα) to replace LPS as an inflammatory stimulus was investigated. Sprague-Dawley rats were treated with separate preparations of LPS or TNFα, and hepatic transcriptomic effects were compared. TNFα showed enhanced consistency at the transcriptomic level compared to LPS. TNFα and LPS regulated similar biochemical pathways, although LPS was associated with more robust inflammatory signaling than TNFα. Rats were then codosed with TNFα and trovafloxacin (TVX), an IDR-associated drug, and evaluated by liver histopathology, clinical chemistry, and gene expression analysis. TNFα/TVX induced unique gene expression changes that clustered separately from TNFα/levofloxacin, a drug not associated with IDRs. TNFα/TVX cotreatment led to autoinduction of TNFα resulting in potentiation of underlying gene expression stress signals. Comparison of TNFα/TVX and LPS/TVX gene expression profiles revealed similarities in the regulation of biochemical pathways. In conclusion, TNFα could be used in lieu of LPS as an inflammatory stimulus in this model of IDRs

    Comparison of RNA-Seq and Microarray Gene Expression Platforms for the Toxicogenomic Evaluation of Liver From Short-Term Rat Toxicity Studies

    Get PDF
    Gene expression profiling is a useful tool to predict and interrogate mechanisms of toxicity. RNA-Seq technology has emerged as an attractive alternative to traditional microarray platforms for conducting transcriptional profiling. The objective of this work was to compare both transcriptomic platforms to determine whether RNA-Seq offered significant advantages over microarrays for toxicogenomic studies. RNA samples from the livers of rats treated for 5 days with five tool hepatotoxicants (α-naphthylisothiocyanate/ANIT, carbon tetrachloride/CCl4, methylenedianiline/MDA, acetaminophen/APAP, and diclofenac/DCLF) were analyzed with both gene expression platforms (RNA-Seq and microarray). Data were compared to determine any potential added scientific (i.e., better biological or toxicological insight) value offered by RNA-Seq compared to microarrays. RNA-Seq identified more differentially expressed protein-coding genes and provided a wider quantitative range of expression level changes when compared to microarrays. Both platforms identified a larger number of differentially expressed genes (DEGs) in livers of rats treated with ANIT, MDA, and CCl4 compared to APAP and DCLF, in agreement with the severity of histopathological findings. Approximately 78% of DEGs identified with microarrays overlapped with RNA-Seq data, with a Spearman’s correlation of 0.7 to 0.83. Consistent with the mechanisms of toxicity of ANIT, APAP, MDA and CCl4, both platforms identified dysregulation of liver relevant pathways such as Nrf2, cholesterol biosynthesis, eiF2, hepatic cholestasis, glutathione and LPS/IL-1 mediated RXR inhibition. RNA-Seq data showed additional DEGs that not only significantly enriched these pathways, but also suggested modulation of additional liver relevant pathways. In addition, RNA-Seq enabled the identification of non-coding DEGs that offer a potential for improved mechanistic clarity. Overall, these results indicate that RNA-Seq is an acceptable alternative platform to microarrays for rat toxicogenomic studies with several advantages. Because of its wider dynamic range as well as its ability to identify a larger number of DEGs, RNA-Seq may generate more insight into mechanisms of toxicity. However, more extensive reference data will be necessary to fully leverage these additional RNA-Seq data, especially for non-coding sequences

    Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models

    Get PDF
    Drug-induced liver injury (DILI) is a patient-specific, temporal, multifactorial pathophysiological process that cannot yet be recapitulated in a single in vitro model. Current preclinical testing regimes for the detection of human DILI thus remain inadequate. A systematic and concerted research effort is required to address the deficiencies in current models and to present a defined approach towards the development of new or adapted model systems for DILI prediction. This Perspective defines the current status of available models and the mechanistic understanding of DILI, and proposes our vision of a roadmap for the development of predictive preclinical models of human DILI

    Global Transcriptomic Profiling Using Small Volumes of Whole Blood: A Cost-Effective Method for Translational Genomic Biomarker Identification in Small Animals

    Get PDF
    Blood is an ideal tissue for the identification of novel genomic biomarkers for toxicity or efficacy. However, using blood for transcriptomic profiling presents significant technical challenges due to the transcriptomic changes induced by ex vivo handling and the interference of highly abundant globin mRNA. Most whole blood RNA stabilization and isolation methods also require significant volumes of blood, limiting their effective use in small animal species, such as rodents. To overcome these challenges, a QIAzol-based RNA stabilization and isolation method (QSI) was developed to isolate sufficient amounts of high quality total RNA from 25 to 500 μL of rat whole blood. The method was compared to the standard PAXgene Blood RNA System using blood collected from rats exposed to saline or lipopolysaccharide (LPS). The QSI method yielded an average of 54 ng total RNA per μL of rat whole blood with an average RNA Integrity Number (RIN) of 9, a performance comparable with the standard PAXgene method. Total RNA samples were further processed using the NuGEN Ovation Whole Blood Solution system and cDNA was hybridized to Affymetrix Rat Genome 230 2.0 Arrays. The microarray QC parameters using RNA isolated with the QSI method were within the acceptable range for microarray analysis. The transcriptomic profiles were highly correlated with those using RNA isolated with the PAXgene method and were consistent with expected LPS-induced inflammatory responses. The present study demonstrated that the QSI method coupled with NuGEN Ovation Whole Blood Solution system is cost-effective and particularly suitable for transcriptomic profiling of minimal volumes of whole blood, typical of those obtained with small animal species

    Preclinical species gene expression database: Development and meta-analysis

    Get PDF
    The evaluation of toxicity in preclinical species is important for identifying potential safety liabilities of experimental medicines. Toxicology studies provide translational insight into potential adverse clinical findings, but data interpretation may be limited due to our understanding of cross-species biological differences. With the recent technological advances in sequencing and analyzing omics data, gene expression data can be used to predict cross species biological differences and improve experimental design and toxicology data interpretation. However, interpreting the translational significance of toxicogenomics analyses can pose a challenge due to the lack of comprehensive preclinical gene expression datasets. In this work, we performed RNA-sequencing across four preclinical species/strains widely used for safety assessment (CD1 mouse, Sprague Dawley rat, Beagle dog, and Cynomolgus monkey) in ∼50 relevant tissues/organs to establish a comprehensive preclinical gene expression body atlas for both males and females. In addition, we performed a meta-analysis across the large dataset to highlight species and tissue differences that may be relevant for drug safety analyses. Further, we made these databases available to the scientific community. This multi-species, tissue-, and sex-specific transcriptomic database should serve as a valuable resource to enable informed safety decision-making not only during drug development, but also in a variety of disciplines that use these preclinical species

    The care of older cancer patients in the United Kingdom

    Get PDF
    The ageing population poses new challenges globally. Cancer care for older patients is one of these challenges, and it has a significant impact on societies. In the United Kingdom (UK), as the number of older cancer patients increases, the management of this group has become part of daily practice for most oncology teams in every geographical area. Older cancer patients are at a higher risk of both under- and over-treatment. Therefore, the assessment of a patient’s biological age and effective organ functional reserve becomes paramount. This may then guide treatment decisions by better estimating a prognosis and the risk-to-benefit ratio of a given therapy to anticipate and mitigate against potential toxicities/difficulties. Moreover, older cancer patients are often affected by geriatric syndromes and other issues that impact their overall health, function and quality of life. Comprehensive geriatric assessments offer an opportunity to identify and address health problems which may then optimise one’s fitness and well-being. Whilst it is widely accepted that older cancer patients may benefit from such an approach, resources are often scarce, and access to dedicated services and research remains limited to specific centres across the UK. The aim of this project is to map the current services and projects in the UK to learn from each other and shape the future direction of care of older patients with cancer

    Priorities for research on neuromodulatory subcortical systems in Alzheimer's disease: Position paper from the NSS PIA of ISTAART

    Get PDF
    The neuromodulatory subcortical system (NSS) nuclei are critical hubs for survival, hedonic tone, and homeostasis. Tau-associated NSS degeneration occurs early in Alzheimer's disease (AD) pathogenesis, long before the emergence of pathognomonic memory dysfunction and cortical lesions. Accumulating evidence supports the role of NSS dysfunction and degeneration in the behavioral and neuropsychiatric manifestations featured early in AD. Experimental studies even suggest that AD-associated NSS degeneration drives brain neuroinflammatory status and contributes to disease progression, including the exacerbation of cortical lesions. Given the important pathophysiologic and etiologic roles that involve the NSS in early AD stages, there is an urgent need to expand our understanding of the mechanisms underlying NSS vulnerability and more precisely detail the clinical progression of NSS changes in AD. Here, the NSS Professional Interest Area of the International Society to Advance Alzheimer's Research and Treatment highlights knowledge gaps about NSS within AD and provides recommendations for priorities specific to clinical research, biomarker development, modeling, and intervention. HIGHLIGHTS: Neuromodulatory nuclei degenerate in early Alzheimer's disease pathological stages. Alzheimer's pathophysiology is exacerbated by neuromodulatory nuclei degeneration. Neuromodulatory nuclei degeneration drives neuropsychiatric symptoms in dementia. Biomarkers of neuromodulatory integrity would be value-creating for dementia care. Neuromodulatory nuclei present strategic prospects for disease-modifying therapies
    • …
    corecore