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Abstract

Anthropogenic infrastructure can negatively affect wildlife through direct mortality and/or dis-

placement behaviors. Some tetranoids (grouse spp.) species are particularly vulnerable to

tall anthropogenic structures because they evolved in ecosystems void of vertical structures.

In western North America, electric power transmission and distribution lines (power lines)

occur in sagebrush (Artemisia spp.) landscapes within the range of the greater sage-grouse

(Centrocercus urophasianus; sage-grouse). The U.S. Fish and Wildlife Service recom-

mended using buffer zones near leks to mitigate the potential impacts of power lines on

sage-grouse. However, recommended buffer distances are inconsistent across state and

federal agencies because data are lacking. To address this, we evaluated the effects of

power lines on sage-grouse breeding ecology within Utah, portions of southeastern Idaho,

and southwestern Wyoming from 1998–2013. Overall, power lines negatively affected lek

trends up to a distance of 2.7 and 2.8 km, respectively. Power lines died not affect lek persis-

tence. Female sage-grouse avoided transmission lines during the nesting and brooding

seasons at distances up to 1.1 and 0.8 km, respectively. Nest and brood success were neg-

atively affected by transmission lines up to distances of 2.6 and 1.1 km, respectively. Distri-

bution lines did not appear to affect sage-grouse habitat selection or reproductive fitness.

Our analyses demonstrated the value of sagebrush cover in mitigating potential power line

impacts. Managers can minimize the effects of new transmission power lines by placing

them in existing anthropogenic corridors and/or incorporating buffers at least 2.8 km from

active leks. Given the uncertainty we observed in our analyses regarding sage-grouse

response to distribution lines coupled with their role in providing electric power service

directly to individual consumers, we recommend that buffers for these power lines be con-

sidered on a case-by-case basis. Micrositing to avoid important habitats and habitat recla-

mation may reduce the potential impacts of new power line construction.
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Introduction

Over the past century, human population growth has facilitated land use changes at a global

scale [1]. The infrastructure (e.g., roads, electrical lines) required to support this human popu-

lation growth can negatively impact wildlife [2]. Anthropogenic structures constructed in pre-

viously unfragmented landscapes [3], can have direct and indirect effects on local wildlife

populations [4–6]. For example, tall anthropogenic structures such as power lines and wind

turbines can cause direct mortality due to wildlife collisions [5, 7]. Anthropogenic develop-

ment may also indirectly affect wildlife populations by causing changes in animal behavior

(e.g., displacement [3]), increased predation risk [8], or by creating impediments to seasonal

migration [9, 10]. The magnitude and consequences of these behavioral changes are often diffi-

cult to measure due to the absence of immediate population level effects [11, 12]. As such,

identifying and quantifying both the direct and indirect effects of anthropogenic structures on

wildlife as well as effective measures to minimize negative impacts are essential for conserving

affected wildlife populations [3, 12].

The greater sage-grouse (Centrocercus urophasianus; sage-grouse) is a sagebrush (Artemisia
spp.) obligate species that requires large, intact sagebrush systems [13]. Populations have

declined nearly 50% in portions of their historic range [14]. Some of the observed declines

have been attributed to the construction, operation, and maintenance of anthropogenic infra-

structure such as tall structures and associated linear features (i.e., energy developments, roads

and power lines) [15]. Some tetranoids, including sage-grouse, may be particularly vulnerable

to tall anthropogenic structures because they evolved in landscapes void of such structures [3].

The potential incompatibility between tetranoids and anthropogenic structures led the U.S.

Fish and Wildlife Service (USFWS) to identify the placement, operation, and maintenance of

tall structures and associated linear features (i.e., roads and power lines) related to energy

development and transmission in sagebrush habitats as a conservation threat for sage-grouse

in their 2010 decision to designate the species as a candidate for protection under the Endan-

gered Species Act of 1973 [16]. They concluded the placement of electric power lines in sea-

sonal sage-grouse breeding habitats could impact local populations through increased

predation of adults, juveniles, and nests or abandonment of suitable habitats.

The USFWS conclusion was based on research suggesting that oil and gas development can

negatively influence sage-grouse lek counts, activity, survival, and habitat selection [17–21].

However, despite these and other studies (see UWIN [22]), it has been difficult to separate the

combined influence of anthropogenic structures (e.g., well sites, roads) and their associated

human activities from the presence of tall linear structures such as power lines [11, 23]. Fur-

thermore, using studies of various types of energy development (i.e., oil/gas, wind) may not be

comparable to power lines because of differing project footprints (polygons vs. linear) and

amounts of human activity [11, 23]. For example, workers may be routinely present through-

out oil fields or wind developments, yet power lines may only be visited infrequently for

inspections or repairs. Power line inspection cycles vary depending on the line voltage, agency

requirements, and location, but may occur as often as twice/year or as infrequent as once over

five to ten years. Because power lines often occur on landscapes with other human activity, it is

difficult to distinguish between potential impacts of the tall structures versus impacts related to

other human activity, such as disturbance or habitat loss. In addition, isolating the effects of

tall structures from other development activities on sage-grouse populations is particularly

problematic if an a-priori status assessment was not completed before the structures were

placed [22]. However, in the absence of experimental data, retrospective analysis of the poten-

tial effects of anthropogenic activities and their related structures on sage-grouse breeding
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distributions may provide new insights to prevent, minimize, or mitigate conservation threats

[11].

Given that, our current knowledge regarding the influence of power lines on sage-grouse is

limited and equivocal. Historically, researchers relied on untested causal mechanisms to infer

the negative effects of power lines on sage-grouse [23]. For example, Knick et al. [24] used

reported foraging distances of golden eagles (Aquila chrysaetos) [25, 26] and common ravens

(Corvus corax) [8, 27] to estimate that electric power transmission lines had a negative impact

on 50% of all sagebrush within the range of sage-grouse [11]. More recently, intense field stud-

ies have documented a reduction in sage-grouse habitat use [28–30] and vital rates [30, 31] in

areas adjacent to power lines. Together, this has led to suggestions that power lines have been a

potential factor in the extirpation of sage-grouse from historical ranges [32]. It is still unclear,

however, under what conditions power lines negatively affect sage-grouse. For example, sage-

grouse may not avoid power lines in years of low raven abundance [30]. There may also be

site-specific conditions that counteract the negative influence of power lines on sage-grouse.

This was demonstrated by Westover et al. [33] who observed positive selection for transmis-

sion lines during the brooding period in Utah. These temporally dependent and site-specific

conditions may explain why Johnson et al. [34] did not detect a consistent relationship

between distance to power lines and leks trends across the specie’s range.

This conflicting information has created a dilemma for wildlife and land managers who are

attempting to develop best management practices (BMP) for power lines in sagebrush habitats.

The USFWS and Avian Power Line Interaction Committee (APLIC) have recommended sea-

sonal and spatial buffers as BMPs for power lines placed near leks in sage-grouse breeding hab-

itats to minimize the potential for negative impacts [35, 36]. However, UWIN [20], Messmer

et al. [11], and Manier et al. [37] concluded the BMP buffer zones vary widely (e.g., 0.3 to 8.0

km) because of challenges associated with interpreting the area influenced by power lines. In

addition, differences between transmission and distribution lines, which serve different pur-

poses and therefore can occur in different landscapes, and are constructed at differing heights,

have not been previously assessed. Together, this lack of information, combined with the

potential site-specific variation in sage-grouse response detailed above demonstrates the need

for a landscape-scale evaluation of power line effects on sage-grouse.

Given this knowledge gap, the overarching purpose for our study was to provide an empiri-

cal evaluation of the effects of transmission and distribution power lines on sage-grouse breed-

ing ecology and to identify appropriate buffer distances. Specifically, our objectives were to

identify the relative effects of both transmission and distribution power lines on sage-grouse

leks, seasonal habitat-use, and reproductive success. To achieve this, we analyzed Utah sage-

grouse lek persistence rates, male lek counts, and radio-marked female sage-grouse breeding

site selection, nest and brood success recorded from 1998–2013 in Utah, portions of southeast-

ern Idaho, and southwestern Wyoming. These study populations represented the majority of

sage-grouse populations in the study area including representation from all 13 Sage-Grouse

Management Areas in Utah (> 30,164 km2). To our knowledge, this is the first landscape-level

comparison for an entire jurisdictional entity (i.e., a US sate) examining the relationship

between power line classification and known sage-grouse nest and brood locations. For com-

parison, other large-scale field studies that have evaluated the influence of power line on sage-

grouse were ~ 3,400 km2 [28, 31] and 7,000 km2 [30]. Within this context, we hypothesized

that transmission lines would have a larger effect on sage-grouse breeding ecology than distri-

bution lines due to their increased structure height, which may provide increased perching

and nesting habitat for avian predators, and larger right-of-way (ROW) corridors [38]. Simi-

larly, distribution lines may not affect sage-grouse to the same extent as transmission lines

because they are more homogenously distributed across the landscape, thus mitigating
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avoidance behaviors, and because they often occur in previously disturbed areas. This infor-

mation will assist state and federal conservation planners to refine conservation BMP buffer

zone recommendations for new power line construction to avoid and minimize the potential

effects on sage-grouse and their breeding habitats.

Materials and methods

Study area

Our study area encompassed known sage-grouse breeding habitats and distributions in Utah,

portions of southeastern Idaho, and southwestern Wyoming [39]. These habitats exhibited

more natural and anthropogenic fragmentation when compared to the Wyoming Basin [40,

41]. Sage-grouse populations in the northern part of our study area inhabit sagebrush-steppe,

while populations in central and southern Utah primarily use sagebrush semi-desert [42]. Both

are shrub-dominated sagebrush systems contrasted with an increased herbaceous component

in higher latitude sagebrush-steppe systems compared to lower latitude sagebrush semi-desert.

Big sagebrush (A. tridentata) varieties typically dominate most landscapes with Wyoming (A.

t. wyomingensis), basin (A. t. tridentata), and mountain (A. t. vaseyana) big sagebrush at lower,

mid, and high elevations, respectively. Shallow soils support low (A. arbuscula) and black (A.

nova) sagebrush communities throughout the study area.

Sage-grouse data

The Utah Division of Wildlife Resources (UDWR) provided the 1998–2013 sage-grouse lek

location and count data we used to conduct our lek persistence and lek trend analysis for the

portion of the study area located in Utah (UDWR, unpublished data). We accessed the sage-

grouse nest and brood location data used in our study from a geo-referenced database main-

tained by Utah State University (USU, unpublished data). This database contained > 17,000

sage-grouse Universal Transverse Mercator (UTM) locations recorded between 1998 and 2013

during radio-telemetry studies completed by researchers at USU and Brigham Young Univer-

sity (BYU) to describe sage-grouse breeding ecology [39]. This included 15 unique study areas

that varied in study length (range = 2–15 years) dependent on management and conservation

needs. To complete these studies, sage-grouse were captured, radio-marked with very high fre-

quency (VHF) radio-collars, released on-site, and routinely monitored to assess vital rates and

habitat-use using standard protocols [39, 43] described below. The study protocols were

approved by the USU or BYU Institutional Animal Use and Care Committee (USU [2322,

2411, 2419, 2560, 1451, 2189, 942, 942R, 1194, 1404, 1332]; BYU [100302, 110301, 050301,

080402]). The UDWR approved Certificates of Registration permitting sage-grouse captures,

radio-marking, and monitoring.

Sage-grouse monitoring

We monitored radio-marked hens every few days until they began to localize in an area. Upon

localization, we would located the hens approximately daily to verify nest initiation, which was

determined when a female was found in the same location on two consecutive visits during the

breeding season. Nesting was verified by visually locating the nesting females by walking con-

centric circles. Actively nesting females were observed 3–5 times per week until the nest

hatched or failed. A successful nest hatch was determined when egg halves were found intact

in or near the nest bowl, and/or the inner membrane of the eggs was separated from the shell

[44]. A failed nest was determined when no eggs or egg halves were found at the nest site, if

egg halves were not intact, or if only egg fragments remained at or near the nest site [45]. We
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attempted to verify nest fate by locating the marked hen and recording brooding type behavior

or visually identifying chicks as soon as the nest had been vacated. A global positioning system

(GPS) location was recorded at each nest after fate was determined and the female was no lon-

ger present.

After a successful hatch, we attempted to locate broods two to three times per week until

the brood reached 42 days of age or until the brood failed. We tracked brooding females using

radio-telemetry, and walked concentric circles around the female location until brooding

behavior or chicks were observed. Upon brood confirmation, we recorded a GPS location

where the female was observed. A failed brood was determined if the female flushed with one

or more adult females and no chicks were seen on two consecutive location attempts.

Landscape variables

Distance to power lines. We acquired geo-referenced linear electric power distribution

and transmission line (power line) locations directly from the electric utility companies Pacifi-

Corp, Garkane Energy, Idaho Power, and Raft River Rural Electric Cooperative. These data were

provided through confidentiality agreements specifically for this study. Each line in the power

line database contained attributes indicating its status as a distribution line (<46 kV) or as a

transmission line (> = 46 kV); in total the data represent 16,493 km of transmission lines and

20,061 km of distribution lines throughout Utah, southern Idaho, and southwestern Wyoming.

Transmission lines, which deliver electric power from the source of generation to substa-

tions, are supported by taller structures (height: 18–40 m). These lines included linear struc-

tures that were located at lower elevations and often bisected sage-grouse habitat. In contrast,

distribution lines are supported by shorter structures (height: ~ 10 m) that deliver electric

power to customers (e.g., homes, businesses). Distribution lines were interspersed throughout

sage-grouse habitat [22]. All power lines evaluated were in service prior to 1998.

We restricted our analysis to power lines located in occupied sage-grouse habitat [39] and

excluded all lines that were not within 10 km of a sage-grouse lek, nest or brood location (Fig

1). We selected this buffer distance because it accommodated the average maximum move-

ment distances documented for sage-grouse broods from nest sites in Utah (8.45 km) [39] and

the upper recommended conservation buffer zones reported in the literature for tall structures

and linear features (8.0 km) [37]. Moreover, assessing data, and as such, buffers beyond 10 km

is unlikely to contribute to sage-grouse conservation because most sage-grouse habitat falls

within 8 km of a lek [37]. Consequently, only 10% of transmission lines and 7% of distribution

lines within the study area were within 10 km of these sage-grouse use habitats. This resulted

in a reduced dataset of 1,698 km and 1,496 km of electric power transmission and distribution

lines, respectively (Fig 1), and a sample of 425 nests and 2,514 unique brood locations obtained

from 239 broods. We then constructed distance from transmission and distribution power

lines using the spatstat library [46] in R (Version 3.3.3; [47]).

Roads. Because power lines can often parallel roads, we determined the percentage of the

power lines adjacent to roads using road location data obtained from the U.S. Census Bureau

[48]. Most of the electric power distribution (69% and 95%) and transmission (54% and 87%)

lines in our study area were located within 100 m and 500 m of a road, respectively. When we

considered distribution lines within 10km of a sage-grouse location, 69% were within 100 m of

a road and 95% were within 0.5 km of a road. When we considered transmission lines within

10 km of a sage-grouse location, 54% were within 100 m of a road and 87% were within 0.5 km

of a road. Because over 90% of the power lines analyzed were within 0.5 km of a road and

roads frequently bisected power lines, we did not have a robust sample size to isolate differ-

ences between power lines with and without roads.
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Percent sagebrush cover. To assess the percent of sagebrush cover, we quantified the pro-

portion of 30-m resolution pixels classified as any type of sagebrush within 1 km of a given

pixel using the moving window analysis in ArcGIS 10.3. The ‘Sagebrush’ category represents

the combination of nine shrubland cover types identified by LANDFIRE 1.2.0 System Group

physiognomies [40] and considered suitable sage-grouse habitat [40]. These communities

included; 1) Colorado Plateau, 2) Mixed Low Sagebrush Shrubland, 3) Wyoming Basins

Dwarf Sagebrush Shrubland and Steppe, 4) Great Basin Xeric Mixed Sagebrush Shrubland, 5)

Inter-Mountain Basins Big Sagebrush Shrubland, 6) Columbia Plateau Low Sagebrush Steppe,

7) Inter-Mountain Basins Big Sagebrush Steppe, 8) Inter-Mountain Basins Montane Sagebrush

Steppe, 9) Inter-Mountain Basins Semi-Desert Shrub-Steppe, and 10) A. tridentata ssp.

vaseyana Shrubland Alliance.

Fig 1. Electric transmission and distribution power lines relative to greater sage-grouse (Centrocercus
urophasianus; sage-grouse) nest and brood locations in Utah, portions of southeastern Idaho, and southwestern

Wyoming, USA, 1998–2013. Highlighted areas indicate sage-grouse locations within 10 km of the power lines studied.

https://doi.org/10.1371/journal.pone.0209968.g001
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Elevation. Because broods have been shown to move up in elevation as the season pro-

gresses ([39]), we included a measure of elevation in our analyses. This data (30 x 30 m) was

obtained from the National Elevation Dataset administered by the U.S. Geological Survey

(https://www.usgs.gov/core-science-systems/ngp/3dep).

Data analysis

We tested for the influence of power lines on lek trends, lek persistence, nest and brood site

selection, and nest and brood success. For each analysis, we developed a linear model that

tested the relationship between distance to power lines and the response metric of interest

(e.g., lek trend). We then compared this model to a null model to establish whether a power

line effect existed. We next added measures of sagebrush cover, elevation, and distance to

roads as covariates of interest to assess whether these covariates improved model fit. Lastly, we

tested for an interactive effect between distance to power lines and our measure of sagebrush

cover because previous work has identified this as a potential driver of sage-grouse habitat

selection and vital rates [30]. Due to model complexity, we did not assess other interactions. In

total this produced 13 model sets (Table 1).

Next we tested for a threshold effect of distance to power lines on the response metric of

interests (e.g., lek trend). Within this context, we hypothesized that if distance from a power

line affected sage-grouse, the effects would be magnified for sage-grouse that were located

closer to power lines [11, 24, 37]. Thus, to explicitly evaluate the distance at which sage-grouse

response to power lines changed, we tested for a response threshold by comparing the afore-

mentioned model combinations (Table 1) to models with a threshold effect specified by two

piecewise linear splines. Piecewise splines consist of a continuous covariate (e.g., distance to

power line) defined over specified segments (e.g., > and< 2.0 km) and a response variable

(e.g., lek trend) that is a continuous function of the covariate over all segments but with differ-

ent slopes in each of the segments. To determine the presence and placement of thresholds, we

performed a grid search of candidate models that included the sequential placement of a

threshold every 0.1 km from 0.1–9.9 km. To minimize outlier effects that may bias threshold

locations, we limited the threshold location such that it fell within the 5% and 95% quantiles of

data for each analysis. This resulted in between 85 and 92 grid search candidate models

depending on the analysis.

We tested for the additive (percent sagebrush cover, elevation, and distance to roads) and

interactive effects (power lines x percent sagebrush cover) on each response metric of interest

as described above. This produced 12 additional model sets which we evaluated (Table 1). Due

to convergence issues, we were not able to assess the importance of additional covariates (i.e.,

percent sagebrush cover, distance to roads, elevation) for lek persistence and lek trends. Across

all model sets (n = 24; Table 1), we selected the model with the lowest Akaike Information Cri-

terion corrected for small sample sizes (AICc; [49]) score as our best fitting model. However, if

a threshold model demonstrated equal support (ΔAICc� 2.0) as being the best-fit model to

either a null or linear model, we also highlighted this information in our results because this

directly addressed our primary interest in identifying any response thresholds relative to

power lines.

If a threshold model was identified as the best-fitting model, we then identified uncertainty

(i.e., 95% confidence intervals) around the placement of each threshold. For general linear

models (GLM), we used the ‘confint.segemented’ command within the segmented library in R.

This approach was used for the lek trend and lek persistence analyses. Because the segmented

library did not accommodate the use of generalized linear mixed models (GLMM), we identi-

fied uncertainty around a threshold GLMM as any threshold model that fell within ΔAICc of
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2.0 of the best-fit threshold model [50]. This uncertainty approach was applied to the nest

selection, brood selection, nest success, brood success analyses.

Although piecewise linear splines are useful for identifying thresholds, the segmenting of

data leads to reduced sample sizes for a given spline. This contributes to a lack of statistical sig-

nificance due to the reliance of p-values on sample size [51]. As such, we ignored arbitrary sig-

nificance thresholds (e.g., p-value� 0.05) in our interpretation of power line effects [52, 53],

and rather, focused our interpretation on the marginal response of sage-grouse to power lines

(i.e., slope of the relationship). As such, we do not provide measures of significance (i.e., p-val-

ues) in our model outputs, but rather present only information on confidence intervals for

each model coefficient.

Preponderance of evidence approach. Many of our analyses consisted of small sample

sizes, which when combined with likely population differences in habitat selection and vital

rates across study sites, likely contributed to increased model uncertainty regarding the influ-

ence of power lines on our response variables of interest. Thus, we evaluated each response

Table 1. Model combinations used to evaluate the influence of power lines on sage-grouse (Centrocercus urophasianus) habitat selection and vital rates.

Model Sets Lek

Trend

Lek Persistence Nest

Selection

Brood

Selection

Nest

Success

Brood

Success

Null Model

Null ✓ ✓ ✓ ✓ ✓ ✓

Linear Models

DistTL ✓ ✓ ✓ ✓ ✓ ✓

DistTL + Sage ✓ ✓ ✓ ✓

DistTL + Elev ✓ ✓ ✓ ✓

DistTL + Rd ✓ ✓ ✓ ✓

DistTL + Sage + Elev ✓ ✓ ✓ ✓

DistTL + Sage + Rd ✓ ✓ ✓ ✓

DistTL + Elev + Rd ✓ ✓ ✓ ✓

DistTL + Sage + Elev + Rd ✓ ✓ ✓ ✓

DistTL � Sage ✓ ✓ ✓ ✓

DistTL � Sage + Elev ✓ ✓ ✓ ✓

DistTL � Sage + Rd ✓ ✓ ✓ ✓

DistTL � Sage + Elev + Rd ✓ ✓ ✓ ✓

Nonlinear Models

DistT1 + DistT2 ✓ ✓ ✓ ✓ ✓ ✓

DistT1 + DistT2 + Sage ✓ ✓ ✓ ✓

DistT1 + DistT2 + Elev ✓ ✓ ✓ ✓

DistT1 + DistT2 + Rd ✓ ✓ ✓ ✓

DistT1 + DistT2 + Sage + Elev ✓ ✓ ✓ ✓

DistT1 + DistT2 + Sage + Rd ✓ ✓ ✓ ✓

DistT1 + DistT2 + Elev + Rd ✓ ✓ ✓ ✓

DistT1 + DistT2 + Sage + Elev + Rd ✓ ✓ ✓ ✓

DistT1 � Sage + DistT2 � Sage ✓ ✓ ✓ ✓

DistT1 � Sage + DistT2 � Sage + Elev ✓ ✓ ✓ ✓

DistT1 � Sage + DistT2 � Sage + Rd ✓ ✓ ✓ ✓

DistT1 � Sage + DistT2 � Sage + Elev + Rd ✓ ✓ ✓ ✓

� Sage represents our percent sagebrush cover covariate, Elev represents an elevation covariate, and Rd represents a distance to any road covariate.

Check marks identify whether a model set was evaluated for a given response metric.

https://doi.org/10.1371/journal.pone.0209968.t001
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metric individually within the results section, and then used a proponderance of evidence

approach [54] to assess whether our landscape scale analyses was suggestive of a power line

effect. More specifically, we evaluated the relationship between distance to power lines and our

response metric for each analyses using the best-fit model. Then, in our weight of evidence

approach, we examined additional models sets that had equal support as the best-fit model

(� ΔAICc of 2.0) to assess whether a threshold effect may exist. For example, if a linear model

was the best-fit model (ΔAICc of 0.0) but a piecewise spline model was within ΔAICc of 2.0,

we interpreted the result as having potential support for a threshold effect, and then examined

whether or not that potential support existed across analyses. This interpretation was based on

the marginal response coefficients for the spline prior and after the threshold for the best-fit-

ting nonlinear model. If a model coefficient was positive prior to the threshold, we interpreted

that as support for a negative power line effect at distances close to the power line.

Lek trends

We employed a 2-stage analytic approach to assess the impact of distance to power lines on sage-

grouse lek trend. In the first stage we estimated the overall count trend for each lek. In the second

stage we treated the estimated trends as our response variable and modeled them as a function of

distance to the nearest power line using both a continuous linear effect as well as piece-wise lin-

ear trends to determine if the magnitude or direction of the effect changed at some distance.

Statewide, 379 leks were monitored in� 1 year between 1998 and 2013. However, to obtain

reliable lek trend estimates we only analyzed data from leks that were monitored in� 12 years,

thereby reducing the total number of leks retained for analysis to 172 leks. The temporal trend

for each lek was estimated using a Negative Binomial generalized additive model (GAM) to

model the annual maximum number of males counted for lek i in year t as a linear function of

year while accounting for population cycles [50] by fitting a smoothed effect of the total number

of males counted statewide in each year. To be comparable through time, the annual total num-

ber of males was calculated using only those leks that were monitored in all 16 years of the study

period. A negative binomial distribution was used because many leks had an excess number of

zero males counted, thereby violating the mean-variance relationship of the Poisson distribu-

tion. Despite having reduced the dataset to only include those leks that were monitored in� 12

of the 16 years, the trend analysis for some leks produced warning messages suggesting that the

models did not converge and parameter estimates were not reliable. Concomitantly, we further

reduced the resulting vector of estimated lek trend estimates by retaining only those estimates

that were within 1 standard deviation of the average trend estimate. This resulted in a sample

size of 125 lek trend estimates being carried forward to the second stage of our analysis.

To examine the role of power lines on lek trends, we constructed a General Linear Model

with a Gaussian distribution as implemented in the base R (Version 3.3.3; [47]). To evaluate

the potential for a response threshold, we used the aforementioned grid search approach to

compare the linear and nonlinear model fits. The small number of leks for which we had trend

estimates and were within 10 km of either transmission or distribution lines (n = 70) required

that we analyze lek trends as function of distance to combined power line types. Distance to

power lines (km) was included as the sole explanatory variable because the small number of

leks precluded the evaluation of other habitat variables (e.g., percent sagebrush cover, roads)

due to convergence issues.

Lek persistence

We defined persistence as leks where at least 2 strutting males were observed in 2 years of each

of the 5-year periods 1996–2000 and 2009–2013 [55, 56]. To examine the role of power lines

Sage-grouse and power lines
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on lek persistence, we constructed a GLM with a binomial distribution (persist vs. not persist)

and logit-link function as implemented in the base R package. We employed the grid search of

potential response thresholds similar to the lek trend analysis to compare the linear and non-

linear model fits. Due to the small number of leks within 10 km of either transmission or dis-

tribution lines (n = 56), we analyzed lek persistence as the function of distance to combined

power line types. Distance to power lines (km) was included as the sole explanatory variable

because the small number of leks precluded the evaluation of other habitat variables (e.g., per-

cent sagebrush cover, roads) due to convergence issues.

Nest and brood site selection

We used a resource selection function (RSF) approach within a use-available study design [57]

evaluated at the population level [58] to determine the relative influence of distance to power

lines and sagebrush cover on sage-grouse nest or brood-site selection. We included sagebrush

cover because it has previously been reported as a factor that influences sage-grouse distribu-

tions [24, 59].

We used our database of known sage-grouse nest and brood locations and randomized

potential locations with our study area to conduct the RSF. For the nest RSF, we generated 15

potential sage-grouse use locations as random points for every nest location. Our placement of

potential sage-grouse locations was constrained to sagebrush vegetation types mapped by the

inter-agency LANDFIRE project. Given that, random nest points were constrained such that

they were located within 10 km of either a transmission or distribution line, and within the

convex hull drawn around nest locations for each study population [39]. This established a dis-

tribution of availability that corresponded to any nesting habitat within a given study area that

was also located within 10k of a power line. Using this information, we constructed our RSF

using a generalized linear mixed model (GLMM) with a binomial distribution (presence vs.

random) and a logit-link function implemented in the lme4 package of R. We included dis-

tance to either transmission or distribution lines as either a linear or piecewise spline covariate.

Power line types were analyzed separately (i.e., two separate RSF models) to accurately mea-

sure whether a threshold response occurred to either or both power line types. Because nest

site selection is also a function of percent sagebrush [13], we also tested for the additive and

interactive effects of percent sagebrush cover. Lastly, we included additive effects of elevation

and distance to roads as covariates to both linear and piecewise spline models (Table 1). Study

area was included as a random factor.

We repeated this process for our brood site RSF, except that an additional constraint was

placed on random locations. Random brood locations were constrained such that they were

located: 1) within 10 km of either a transmission or distribution, 2) within the convex hull

drawn around brood locations for each study population, and 3) within 10 km of each individ-

ual brood location. This established a distribution of availability that was individual specific

such that random locations were in close proximity to a given brood while also meeting the

prior constraints. Using this information, we constructed our RSF using a GLMM with a bino-

mial distribution (presence vs. random) and a logit-link function implemented in the lme4

package of R. We included distance to either transmission or distribution lines as either a lin-

ear or piecewise spline covariate as described above. Although it has been suggested sage-

grouse may move up in elevation as the brooding season progresses [59], we did not evaluate

this in our models because it appeared to occur only in specific sites within our study area (S1

Appendix). Furthermore, the inclusion of elevation and Julian date in our models led to con-

vergence issues, which necessitated that we focus on the effects of power lines on brood site

selection. We included our measure of percent sagebrush cover as either additive or interactive

Sage-grouse and power lines
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effects. Lastly, we included additive effects of elevation and distance to roads to both linear and

piecewise spline models (Table 1). Brood ID and study area were included as nested random

effects. We built both nest and brood models using standardized coefficients (xi - x/s) to facili-

tate direct comparison within models.

Nest and brood success

We used our nest database to construct nest models using a GLMM with a binomial distribu-

tion (success vs. failure) and a logit-link function implemented in the lme4 package of R. We

included distance to either transmission or distribution lines as either a linear or piecewise

spline covariate. We included our measure of percent sagebrush cover as an additive and inter-

active effect in the models. Lastly, we included additive effects of elevation and distance to

roads to both linear and piecewise spline models (Table 1). Study area was included as a ran-

dom effect in the nest analysis.

We used our brood-site database to construct nest models using a GLMM with a binomial

distribution (success vs. failure) and a logit-link function implemented in the lme4 package of

R. To provide a cumulative response value for this analysis, we identified the median distance

to transmission and distribution lines for each brood using their associated telemetry loca-

tions. We only retained individuals in the analysis where the median value of each individual

was� 10 km from either a transmission or distribution line. We included distance to either

transmission or distribution lines as either a linear or piecewise spline covariate. We included

our measure of percent sagebrush cover as an additive and interactive effect in the models.

Lastly, we included additive effects of elevation and distance to roads to both linear and piece-

wise spline models (Table 1). Brood ID and study area were included as nested random effects.

We built both nest and brood models using standardized coefficients (xi - x/s) to facilitate

direct comparison within models.

Results

Lek trend

Of the 125 leks we estimated temporal trends for, 70 leks were within 10 km of power lines

(including both transmission and distribution). For these leks, a model that contained a linear

effect of power lines on lek trend (ΔAICc = 0.42) was a worse fit to the data than the null

model (ΔAICc = 0.00). However, support for the null model was substantially weaker

(ΔAICc = 4.53) than the best-fit threshold model.

Thus, our data suggests that lek trends increased for leks located farther from a power line

(β = 0.26, 95% CI = -0.05, 0.56) up until a distance of 1.2 (95% Threshold CI = 0.1, 2.3) km

(Fig 2). After this threshold, lek trends decreased but the slope of the relationship was dimin-

ished in comparison to the pre-threshold relationship (β = -0.02, 95% CI = -0.05, -0.00).

Lek persistence

We identified 186 leks within 10 km of transmission and distribution lines, of which 56 were

considered to be persistent [55, 56]. For these leks, a model containing a linear effect of power

lines on lek persistence (ΔAICc = 2.08) was a worse fit to the data than the null model. A

model containing a threshold effect of distance to power lines on lek persistence did not

improve model fit (ΔAICc = 2.15) suggesting that power lines did not influence lek persistence

in our study (S2 Appendix).

Sage-grouse and power lines
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Nest and brood site selection

Nests. Of 429 nests, 365 were within 10 km of a transmission line and 222 were within 10

km of a distribution line. Individual sage-grouse nests were recorded as close as 103 m and 239

m from electric power transmission and distribution lines, respectively. For these nests, a

model that contained a linear effect of distance to transmission lines on the relative probability

of nest-site selection was a better fit to the data than the null model (ΔAICc = 1.52). A model

that contained an interaction between distance to transmission lines and percent sagebrush

cover further improved model fit over the univariate linear distance to power line model

(ΔAICc = 175.33). However, support for this best-fit linear model was substantially weaker

(ΔAICc = 7.67) than the best fit threshold model that included an interaction between distance

to transmission lines and percent sagebrush cover. Thus, our data suggests that the relative

probability of nest-site selection increased as sage-grouse moved farther from transmission

lines up until a distance of 1.1 (range = 1.1–1.3; S3 Appendix) km (Fig 3A). After this thresh-

old, the relative probability of nest-site selection declined in areas of high sagebrush cover but

remained relatively constant in areas of low sagebrush cover. In accordance, a linear (univari-

ate) analysis suggested that sage-grouse selected nest sites farther from transmission lines (β =

0.10, 95% CI = -0.00, 0.21).

For nests within 10 km of a distribution line, a model that contained a linear effect of distri-

bution lines on the relative probability of nest-site selection was a better fit to the data than the

null model (ΔAICc = 0.26). A full model that included a linear effect of distance to distribution

line further improved model fit over the univariate linear distance to distribution line model

(ΔAICc = 63.11). The best-fit threshold model did not improve model fit (ΔAICc = 0.32) over

the best-fit linear model. For our best-fit model, the relative probability of nest site selection

increased as distance from distribution lines increased (β = 0.12, 95% CI = -0.08, 0.33; S3

Appendix).

Broods. We recorded 3,335 brood locations during the study, of which 2,986 were within

10 km of a transmission line and 1,610 were within 10 km of a distribution line. For these

broods, a model that contained a linear effect of transmission lines on brood-site selection was

Fig 2. Effect of power lines on greater sage-grouse (Centrocercus urophasianus) lek trends and persistence in Utah,

USA, 1998–2013. Lines represent the fitted values from the best-fit model of the effect of power lines on lek trends (S2

Appendix). The vertical dashed line identifies the response threshold at which sage-grouse response (i.e., lek trend)

changed. Shaded areas highlight uncertainty (95% CI) around the location of the response threshold.

https://doi.org/10.1371/journal.pone.0209968.g002
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a better fit to the data then the null model (ΔAICc = 176.50). The full model that included a

threshold effect of distance to transmission line further improved model fit over the linear dis-

tance to transmission line model (ΔAICc = 1584.34). However, support for the best-fit linear

model was substantially weaker (ΔAICc = 154.13) than the best fit threshold model which

included an interaction between distance to transmission lines and percent sagebrush cover.

Thus, our data suggest that the relative probability of brood use increased for leks located far-

ther from a transmission line up until a distance of 1.2 (range = 1.2–1.4; S4 Appendix) km (Fig

4). After this threshold, the relative probability of brood-site selection declined in areas of high

sagebrush cover but remained relatively constant in areas of low sagebrush cover.

For brood sites within 10 km of a distribution line, a model containing a linear effect of dis-

tribution lines on the relative probability of nest-site selection was a better fit to the data than

the null model (ΔAICc = 193.5). The full model that contained a linear effect of distance to dis-

tribution lines further improved model fit over the linear distance to distribution line model

(ΔAICc = 638.65). However, support for the best-fit linear model was substantially weaker

Fig 3. Effect of power lines on the relative probability of nest site selection of greater sage-grouse (Centrocercus
urophasianus; sage-grouse) throughout Utah, portions of southeastern Idaho, and southwestern Wyoming, USA,

1998–2013. Lines are population-averaged fitted values from the best-fit GLMM (S3 Appendix) describing the effects

of transmission lines (A) and distribution lines (B) on sage-grouse nest site selection. The vertical dashed line identifies

the response threshold at which sage grouse response changes. The shaded areas highlight uncertainty (ΔAICc< 2)

around the location of the response threshold.

https://doi.org/10.1371/journal.pone.0209968.g003
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(ΔAICc = 126.15) than the best fit threshold model which included all covariates and interac-

tions (S4 Appendix). Thus, our data suggests the relative probability of brood use may be posi-

tively influenced by distribution lines except in cases of high sagebrush cover until a distance

of 3.0 (range = 2.4–3.2; S4 Appendix) km (Fig 4). After this threshold, the relative probability

of brood-site selection remained relatively constant.

Nest and brood success

Nests. We recorded 422 nests during the study, of which 83% (n = 352) were within 10

km of a transmission line and 50% (n = 212) were within 10 km of a distribution line. For

these nests, a model that contained a linear effect of transmission lines on nest success was a

better fit to the data than the null model (ΔAICc = 2.95). A model that include the linear effect

of distance to transmission lines and distance to roads improved model fit over the univariate

linear distance to transmission model (ΔAICc = 1.00). The best-fit threshold model did not

improve model fit (ΔAICc = 0.94) over the best-fit linear model. For our best-fit model, the

Fig 4. Effect of power lines on the relative probability of greater sage-grouse (Centrocercus urophasianus; sage-

grouse) brood site selection in Utah, portions of southeastern Idaho, and southwestern Wyoming, USA, 1998–

2013. Lines are population-averaged fitted values from the best-fit GLMM (S4 Appendix) describing the effects of

transmission lines (A) and distribution lines (B) on sage-grouse brood site selection. The vertical dashed line identifies

the response threshold at which sage grouse response changes. The shaded areas highlight uncertainty (ΔAICc< 2)

around the location of the response threshold (no uncertainty was recorded for distance from transmission lines).

https://doi.org/10.1371/journal.pone.0209968.g004
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relative probability of nest success increased as distance from transmission lines increased (β =

0.27, 95% CI = 0.05, 0.48; S3 Appendix; Fig 5).

For nests within 10 km of a distribution line, a model containing a linear effect of distribu-

tion lines on nest success did not improve model fit (ΔAICc = 1.77) over the null model. How-

ever, support for the null model was weaker (ΔAICc = 1.00) than the best-fit threshold model

which included an additive effect of percent sagebrush cover. Thus, our data suggested that the

probability of nest success declined as you moved farther from a distribution line (β = -0.27,

95% CI = -0.64, 0.08; Fig 5) up until a distance of 8.9 (range = 6.2–9.2; S5 Appendix) km, after

which, nest success increased (β = 3.45, 95% CI = -1.03, 8.40). It is likely that the decrease in

nest success beyond the threshold was driven by our sample size (n = 35 / 222) beyond 8.9 km.

Of those 35 nests, 77% (n = 27) were located in two study areas which had a combined 66%

nest success suggesting that these areas influenced our model results beyond 8.9 km.

Broods. We recorded 434 broods during the study, of which 89% (n = 386) were within

10 km of a transmission line and 47% (n = 206) were within 10 km of a distribution line.

Fig 5. Effect of power lines on the greater sage-grouse (Centrocercus urophasianus; sage-grouse) in Utah, portions

of southeastern Idaho, and southwestern Wyoming, USA, 1998–2013. Lines are population-averaged fitted values

from the best-fit GLMM (S5 Appendix) describing the effects of transmission lines (A) and distribution lines (B) on

sage-grouse nest success. The vertical dashed line identifies the response threshold at which sage-grouse response

changes. The shaded areas highlight uncertainty (ΔAICc< 2) around the location of the response threshold. Circles

represent a binning of data points that informed the model; sample sizes within each 1 km bin are identified in

parentheses. For example, 15 nests were recorded between 0–1 km from a transmission line, of which 40% (n = 6)

persisted.

https://doi.org/10.1371/journal.pone.0209968.g005
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Brood locations were documented as close as 205 m and 24 m from transmission and distribu-

tion power lines, respectively. Because our data set contained multiple locations for each

brood that were recorded regularly throughout the season, we were also able to determine if

some broods may have traveled under power lines. We recorded eight radio-marked female

sage-grouse with broods (4%) crossing under transmission lines 27 times. Eleven brooding

females (8%) crossed under distribution lines 86 times. For broods that crossed distribution

lines, the median number of crossings per brood was three (range 2–33). Fifteen broods (6%)

crossed under both transmission and distribution lines.

For these broods, a model that contained a linear effect of transmission lines on brood suc-

cess was a better fit to the data than the null model (ΔAICc = 1.13). A model that included a

linear effect of transmission line and elevation farther improved model fit over the univariate

linear distance to transmission line model (ΔAICc = 0.70). The best-fit threshold model did

not improve model fit (ΔAICc = 0.52) over the best-fit linear model. For our best-fit model,

the relative probability of brood success increased as distance from transmission lines

increased (β = 0.19, 95% CI = -0.09, 0.47; S3 Appendix; Fig 6).

For broods within 10 km of a distribution line, a model that contained a linear effect of dis-

tribution on brood success was a worse fit than the null model (ΔAICc = 1.72). A model that

contained a threshold effect of distance to distribution lines on brood success did not improve

model fit (ΔAICc = 1.83) beyond the null model (S6 Appendix).

Preponderance of evidence

There was support (< ΔAICc of 2.0) for a nonlinear model being our best-fitting model for all

analyses except lek persistence (Table 2). For lek trend, our best-fit model suggested that there

was a negative effect of power lines up until a distance of 1.2 km. We report similar results for

nest-site selection (1.1 km), nest success (2.4 km), and brood success (1.3 km) relative to trans-

mission lines (positive coefficient for D1 in Table 2). We observed the opposite pattern (higher

selection for distances close to transmission lines) for brood-site selection, however, these

Fig 6. Effect of power lines on the greater sage-grouse (Centrocercus urophasianus; sage-grouse) in Utah, portions

of southeastern Idaho, and southwestern Wyoming, USA, 1998–2013. Lines are population-averaged fitted values

from the best-fit GLMM (S6 Appendix) describing the effects of transmission lines on sage-grouse brood success.

Circles represent a binning of data points that informed the model; sample sizes within each 1 km bin are identified in

parentheses. For example, 18 nests were recorded between 0–1 km from a transmission line, of which 11% (n = 2)

persisted.

https://doi.org/10.1371/journal.pone.0209968.g006
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main coefficient effects were influenced by a percent sagebrush cover interaction which sug-

gested a negative effect of transmission lines (Fig 4).

In comparison, our data suggested that sage-grouse may be negatively affected by distribu-

tion lines during the nesting period (positive coefficient for D1 in Table 2) but positively select-

ing for areas near distribution lines during the brood period (positive coefficient for D1 in

Table 2). It is also important to note that our main effect coefficients for nest-site selection

were influence by a percent sagebrush cover interaction that suggests that distribution lines

may have a positive effect of nest-site selection (Fig 3B). As such, our overall weight of evidence

approach suggests there was a negative effect of transmission lines up until a threshold of 2.4

km and there was general lack of support for a distribution line effect.

Discussion

Our results suggested that different types of power lines can have varying effects on sage-

grouse demographics, and percent sagebrush cover may influence these effects. For example,

lek trends were negatively affected by power lines up until a distance of 1.2 (95% CI = 0.1–2.3)

km. When we were able to separate sage-grouse responses according to power line type, trans-

mission lines appeared to have greater impacts to sage-grouse than distribution lines. Thus,

our analyses yielded a data-driven 2.3-km BMP buffer zone around leks for the construction

of new transmission power lines in occupied sage-grouse habitats. However, sage-grouse nest

and brood locations where still documented within this BMP buffer zone. Because distribution

lines had less of an impact on sage-grouse demographics than transmission lines, we recom-

mend site specific planning as appropriate for distribution lines, which may include buffers,

micrositing, habitat reclamation, other BMPs, or a combination of these practices.

Table 2. Preponderance of evidence Table. Delta AIC scores corrected for small sample sizes for the best-fit null, linear, and nonlinear model for each analyses.

Analyses Null

Model

ΔAICc

Best Linear

Model

ΔAICc

Best Nonlinear

Model

ΔAICc

Threshold

(km)

Best Nonlinear

Model

Dist1

Best Nonlinear

Model

Dist2

Lek analyses

Lek trend 0.47 0.88 0.00 1.2 0.26 -0.02

Lek persistence 0.00

Transmission line analyses

Nest selection (transmission line) 0.00 1.1 9.73 0.10

Brood selection (transmission line) 0.00 1.2 -0.01 0.00

Nest success (transmission line) 0.00 0.94 2.4 1.09 0.18

Brood success (transmission line) 1.83 0.00 0.52 1.3 4.60 0.14

Distribution line analyses

Nest selection (distribution line) 0.00 0.32 9.5 0.19 -6.74

Brood selection (distribution line) 0.00 3.0 -1.41 0.26

Nest success (transmission line) 0.00 0.94 2.4 1.09 0.18

Brood success (distribution line) 0.00 1.72 1.83 6.7 -0.38 0.88

Best-fit models were only displayed if they were within < ΔAICc of 2.0. For the best-fit nonlinear model, we identified the threshold and the main effect marginal

coefficient before (D1) and after (D2) the threshold. Across all analyses, our data suggests a negative effect of transmission lines up to 2.4 km and no effect of

distribution lines.

https://doi.org/10.1371/journal.pone.0209968.t002
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Based on our analysis, sage-grouse avoided nesting within 1.1 km of transmission lines and

nest success was most negatively affected at distances up until 2.4 km (Table 2). We did not

detect an effect of distance to distribution lines on sage-grouse nest-site selection. Similarly,

brooding female sage-grouse tended to avoid the immediate proximity of transmission lines

up to a distance of 1.2 km, whereas they did not avoid distribution lines. Similar to our site-

selection analyses, transmission lines had a negative effect on sage-grouse nest success up to a

distance of 2.4 km, whereas, sage-grouse nests located closer to distribution lines were more

successful. Transmission lines also had a negative effect on brood success up to a distance of

1.3 km, whereas distribution lines had no effect.

These preponderance of evidence suggests that sage-grouse may be more impacted by

transmission lines than to distribution lines. It remains unclear, however, whether this was

driven by habitat characteristics. In our study area, transmission lines were located at lower

elevations on the landscape and farther from developed areas. In contrast, distribution lines

were located in areas with greater anthropogenic development and habitat fragmentation than

transmission lines, as they directly provide electrical power to homes, communities, busi-

nesses, and industry [60]. Thus, habitat availability alone may help explain increased avoidance

of transmission lines but not distribution lines (i.e., sage-grouse could not avoid distribution

lines without encountering other anthropogenic structures, whereas sage-grouse could have

ranged in larger areas surrounding transmission lines in otherwise intact habitat). This is likely

in our study areas because sage-grouse seasonal movements in Utah reflect habitat availability

[39]. It may also be possible that the interspersed, and thus, more homogenous spatial arrange-

ment of distribution lines on the landscape may have facilitated habituation by sage-grouse

[34].

The high density and proximity of secondary roads adjacent to power lines may also explain

sage-grouse avoidance of power lines [11, 22, 32]. In our study area, we observed both selection

for (brood-site selection-distribution; S4 Appendix, nest-success: transmission; S5 Appendix)

and avoidance of roads (brood-site selection-transmission; S4 Appendix). This inconclusive

effect of roads may be in part due to the correlation of power lines and roads. In areas where

transmission lines and distribution lines had been constructed, 54% and 69% of sage-grouse

locations, respectively, were within 100 m of a road (S7 Appendix). These roads have estab-

lished linear corridors that may exceed 300 m or more and may include unimproved power

line access roads, county roads, and/or state/interstate highways [11]. Thus, sagebrush habitats

located< 1 km of the power lines may have been degraded by historic road and power line

construction that contributed to sage-grouse habitat loss and therefore site avoidance. Similar

to other studies, [23], we were unable to separate these effects (anthropogenic development

from and tall structures) due to small sample size. Moreover, Johnson et al. [34] and Wisdom

et al. [32] cautioned that retrospective studies may be biased in that many of the factors affect-

ing sage-grouse ecology were in place prior to their studies [11]. Despite this, our study does

represent the first comprehensive examination of the direct and indirect effects of power lines

on sage-grouse at a landscape scale. This is important because published research on the effects

of these structures on the reproductive fitness of any grouse species is lacking [3].

Alternatively, it has been hypothesized that the avoidance of transmission lines is due to

direct predation facilitated by increased predator visibility and increased raptor and corvid

nesting substrates [11, 28, 30, 31]. Scientific evidence is still lacking as to whether sage-grouse

instinctively avoid power lines specifically to avoid predators [11, 37], but given that transmis-

sion lines were 8–30 meters taller than distribution lines in our study area, this may be a poten-

tial mechanism to explain sage-grouse avoidance. It is also important to note that Lammers

and Collopy [61] and Prather and Messmer [62] both documented high use of electric power

distribution lines as perch sites for raptors and corvids in or near our study areas which suggest
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that predation risk may be higher closer to power lines. Our results that demonstrated

increased avoidance of transmission lines and lower survival in areas near them corroborates

this. However, our study did document sage-grouse movements beneath power lines suggest-

ing predation may not be as influential as sometimes stated. As such, this debate remains unre-

solved because of the difficulty in connecting predation risks to various combinations or types

of power lines and avian predator species [11, 23, 37].

Although we were unable to identify the mechanism responsible for sage-grouse avoidance

of power lines, we were able to provide the first landscape-scale empirical evaluation of the

effects of power lines on sage-grouse during the breeding season. Our evaluation supports the

broad-scale analysis by Wisdom et al. [32] and Gibson, Blomberg (30) that distance to trans-

mission lines had a potential negative influence on lek persistence. However, our analyses

extended beyond Wisdom et al. [26] in that we identified a BMP buffer zone of 2.3 km from

active leks for power lines that could avoid and minimize the potential effects of new power

line construction on sage-grouse ecology.

For comparison, a 3.0 km minimum BMP buffer zone has been previously recommended

to mitigate the effects of tall structures on seasonal sage-grouse habitat [13, 63–65]. This BMP

buffer zone was recommended because available range wide nesting data suggested most sage-

grouse nest within 3.2 km of known leks [66]. In our study areas, nest success increased as

females selected nesting sites farther from transmission lines. This effect was greatest up to a

distance of 2.4 km. However, long-term sage-grouse nest location data collected in Utah and

other states suggested that some female sage-grouse may nest up to 5.0 km or more from

known leks [39, 67]. This may explain why nesting success increased, but at a slower rate,

beyond the 2.4 km threshold (Table 2).

The BLM National Technical Team (NTT) reviewed data regarding distances from nest

locations to the nearest leks where female sage-grouse were captured [68]. Based on these data,

the BMP buffer zone would need to exceed a 6.0 km radius around leks to protect most of the

nesting female sage-grouse. However, the NTT acknowledged a 6.0 km buffer would not be

practical because of oil and gas leasing requirements and that within priority habitats existing

lek-based BMP buffers may overlap precluding development [68]. As such, our results lend

support to Connelly et al. [13], the Wyoming Sage-grouse Executive Order [69], and APLIC

[36] recommendations of placing new electric transmission lines within existing corridors. If

this is unfeasible, we suggest a 2.3 km buffer for the construction of transmission lines be

applied around active leks to avoid and minimize impacts to nesting habitat in Utah. It is

unclear from our data whether an active lek buffer associated with distribution lines is required

around nesting habitat, thus, we would recommend that new distribution lines be co-located

with existing disturbance if possible.

Beck et al. [70] estimated that 29,821 km2 (13.6%) of Utah provided sage-grouse habitat.

Connelly et al. [71] and Knick et al. [24] suggested that electric power transmission lines could

have an impact on 40–50% (11,928–14,911 km2) of all sagebrush within designated sage-

grouse management areas. However, we found that only 10% of transmission lines and 7% of

distribution lines within our study areas were within 10 km of occupied sage-grouse habitat

suggesting that power lines may be less influential to overall sage-grouse habitat than previ-

ously thought in Utah. Moreover, if we applied a 2.3 km buffer zone around all known electric

power transmission (1,698 km) and distribution (1,496 km) lines, our analysis suggests that

power lines may only have an ecological effect on 22.6% (6,817km2) of available sage-grouse

breeding habitat in our study areas.

Our results highlighted the importance of maintaining suitable sagebrush cover in areas

where power lines occur on the landscape, as percent sagebrush cover increased grouse

selection of sites for nesting and brooding increased despite the presence of power lines. In
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our study areas, percent sagebrush cover improved as distance to transmission lines

increased (β = 3.28, p� 0.01). This may explain why nest and brood success continued to

increase as sage-grouse females moved farther from transmission lines. Our results validate

the value of reclaiming sagebrush habitats in areas in close proximity to power lines.

Female sage-grouse demonstrated high selection preferences for sites within ~ 1.1 km of

transmission lines during the nesting and brooding period, which suggests these sites pro-

vide additional benefits which we did not account for in our models. In such cases, manage-

ment strategies that increased the availability of useable sagebrush habitat space (i.e.,

removal of conifer encroachment and vegetation management to encourage low growing

species) in areas where power lines occur could enhance population stability [39, 72, 73]

and potentially counteract the negative impacts of power lines. However, it is possible that

habitat improvement strategies could lead to population sink dynamics if sage-grouse are

attracted to power lines and subsequently experience negative population growth due to fac-

tors such as increased predation [30]. Thus, managers should evaluate this practice on a

case-by-case basis.

Currently 87% of the sage-grouse range is grazed by livestock [24]. Dahlgren et al. [54,

73] reported increased sage-grouse production on working landscapes grazed by domestic

livestock using rotational grazing practices. Utility ROW vegetation management practices

may serve a similar function to livestock grazing, as both reduce tall growing species and

encourage growth of grassland and shrub species. Sandford et al. [72] reported increased

sage-grouse nest survival and brood success in sagebrush landscapes where conifer

encroachment was reduced. Messmer [74] suggested implementation and evaluation of

these landscape-level management practices should be considered as part of the integrated

toolkit to mitigate the potential effects anthropogenic activities have on sage-grouse and

their habitats.

Our study represents the first landscape-level comparison within a state’s jurisdictional

boundary that examined the relationship between power line classification and known

sage-grouse nest and brood locations. Despite our comprehensive approach, we were still

unable to resolve a number of concerns that may influence sage-grouse responses to power

lines due in a large part to our limited samples sizes. Specifically, our sample size limited

our ability to evaluate how structure height and design may differentially influence sage-

grouse response beyond our general classifications (e.g., distribution vs transmission). Simi-

larly, it is unclear whether structure design may play a role in sage-grouse response given

the variation in available perching and nesting substrates that power lines provide to avian

predators [11]. We were also unable to evaluate the extent to which placement of new

power lines within anthropogenic corridors (e.g., power lines, transportation) reduces the

overall negative influence of sage-grouse (e.g., [29]), and whether those benefits to sage-

grouse are capped at some development threshold (e.g., 2 vs. 4 power lines in a corridor).

Due to the propensity of roads in proximity to power lines throughout our study area, we

were also unable to distinguish between potential independent impacts from roads versus

power lines. Lastly, we documented increased use of elevation during the brood period,

however we were unable to explicitly evaluate how seasonal movement behaviors may inter-

act with sage-grouse response to power lines (distance to power lines x elevation interac-

tion), as birds may move away from power lines in response to other unrelated habitat

factors. Given these limitations, we encourage future research that addresses these chal-

lenges. The increasing use of GPS technology in wildlife studies, including sage-grouse, and

the larger sample sizes they provide, may provide new opportunities to evaluate these unan-

swered questions.
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Conclusions

Our research is the first to quantify appropriate BMP buffer distances based on known sage-

grouse seasonal habitat-use data for the construction of new electric power transmission

and distribution lines in sage-grouse habitats. Our research also demonstrated that interac-

tions between percent sagebrush cover and type of power line affect sage-grouse responses.

Based on our results, we recommend a hierarchical approach for avoiding and minimizing

the potential impacts of power lines on sage-grouse. New transmission power lines should

be placed in existing utility or transportation corridors where feasible. If co-location is not

feasible, lek buffers of 2.3 km for new transmission lines should be used to mitigate the

potential impacts to sage-grouse. It is questionable from our results, however, that this

buffer would also apply to distribution lines given the uncertainty we observed regarding

sage-grouse response to distribution lines in our habitat selection and reproductive success

analyses. In addition, other regulatory or resource conflicts (i.e., electric utilities are

required by law to provide service to requesting customers and to minimize impacts to

other resources–such as wetlands, cultural or paleontological resources, etc.) can result in

new construction within a sage-grouse buffer in some circumstances. Thus, we recommend

managers continue to incorporate habitat protection and reclamation as conservation strat-

egies for new power line construction, and population monitoring (i.e., lek counts) as feed-

back mechanisms to evaluate the effectiveness of these strategies. The use of applicable

BMPs, such as the sage-grouse BMPs for electric utilities developed by APLIC, should be

considered and implemented on a project-by-project basis. It is important that wildlife

resource agencies, land management agencies, electric utilities, and private landowners

work together to address site-specific aspects of new power line locations and sage-grouse

habitats. More broadly, the methodological process employed here can be used widely to

evaluate the influence of anthropogenic structures on grouse species globally. With this

information, land managers will be better suited to minimize impacts from ongoing human

infrastructure construction on wildlife.

Supporting information

S1 Appendix.

(DOCX)

S2 Appendix.

(DOCX)

S3 Appendix.

(DOCX)

S4 Appendix.

(DOCX)

S5 Appendix.

(DOCX)

S6 Appendix.

(DOCX)

S7 Appendix.

(DOCX)

Sage-grouse and power lines

PLOS ONE | https://doi.org/10.1371/journal.pone.0209968 January 30, 2019 21 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209968.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209968.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209968.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209968.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209968.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209968.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209968.s007
https://doi.org/10.1371/journal.pone.0209968


Acknowledgments

We thank J. Flory, R. Chi, J. Reinhart, C. D. Caudill, E. Thacker, S. Graham, N. Gruber-Had-

den, O. Duvuvuei, S. Dettenmaier, H. McPherron, J. Robinson, B. Flack, A. Cook, B. Wing, C.

Cardinal, L. Smith, C. Burnett, C. Perkins, B. Christiansen, K. Bunnell, R. Peck, J. Hennefer, D.

Bambrough, J. Kaze, and J. Baxter. For leading field-based collection of the sage-grouse loca-

tion data used in our analysis. We acknowledge D. Ramsey’s USU Remote Sensing and GIS

Laboratory in the Department of Wildland Resources for completing spatial analysis. We

thank all the biological technicians that worked within study areas throughout the many field

seasons. We acknowledge the private landowners who provided the access to enter their prop-

erties for data collection and for their participation within the local working groups that sup-

ported the research projects. The data used to complete our research were provided by the

Utah Division of Wildlife Resources, USU, BYU, Rocky Mountain Power/PacifiCorp, Garkane

Energy, and Raft River Rural Electric Cooperative, and Idaho Power.

Author Contributions

Conceptualization: Michel T. Kohl, Terry A. Messmer, David K. Dahlgren, Sherry Liguori.

Data curation: Benjamin A. Crabb, David K. Dahlgren, Randy T. Larsen, Shandra N. Frey,

Sherry Liguori, Rick J. Baxter.

Formal analysis: Michel T. Kohl, Benjamin A. Crabb, Randy T. Larsen.

Funding acquisition: Terry A. Messmer.

Methodology: Michel T. Kohl, Benjamin A. Crabb, Michael R. Guttery, Randy T. Larsen.

Project administration: Shandra N. Frey.

Resources: Terry A. Messmer.

Software: Benjamin A. Crabb.

Supervision: David K. Dahlgren, Rick J. Baxter.

Writing – original draft: Michel T. Kohl, Terry A. Messmer, Sherry Liguori.

Writing – review & editing: Michel T. Kohl, Terry A. Messmer, Benjamin A. Crabb, Michael

R. Guttery, David K. Dahlgren, Randy T. Larsen, Shandra N. Frey, Sherry Liguori, Rick J.

Baxter.

References
1. Goldenwijk KK, Beusen A, van Drecht G, de Vos M. The HYDE 3.1 spatially explicit database of human

induced global land-use change over the past 12,000 years. Global Ecol Biogeogr. 2010; 20: 73–86.
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