404 research outputs found

    Naturalization of current social representations of children and adolescents

    Get PDF
    Convergen en esta investigación el interés de docentes de la facultad en proporcionar, instrumentos a partir del conocimiento científico, a los espacios de intervención sobre violencia en la infancia y adolescencia. Ello se conjuga con la preocupación de profesionales que se desempeñan laboralmente en relación a esta problemática, quienes observan la inexistencia de transformaciones paradigmáticas y conceptuales en los escenarios donde se producen las situaciones planteadas. Por lo anteriormente descrito se hace imperioso, analizar científicamente el tema, para proporcionar nuevos conocimientos; a fin de dar posibles respuestas A la sociedad e instituciones

    Conceptual design of the X-IFU Instrument Control Unit on board the ESA Athena mission

    Get PDF
    Athena is one of L-class missions selected in the ESA Cosmic Vision 2015-2025 program for the science theme of the Hot and Energetic Universe. The Athena model payload includes the X-ray Integral Field Unit (X-IFU), an advanced actively shielded X-ray microcalorimeter spectrometer for high spectral resolution imaging, utilizing cooled Transition Edge Sensors. This paper describes the preliminary architecture of Instrument Control Unit (ICU), which is aimed at operating all XIFU's subsystems, as well as at implementing the main functional interfaces of the instrument with the S/C control unit. The ICU functions include the TC/TM management with S/C, science data formatting and transmission to S/C Mass Memory, housekeeping data handling, time distribution for synchronous operations and the management of the X-IFU components (i.e. CryoCoolers, Filter Wheel, Detector Readout Electronics Event Processor, Power Distribution Unit). ICU functions baseline implementation for the phase-A study foresees the usage of standard and Space-qualified components from the heritage of past and current space missions (e.g. Gaia, Euclid), which currently encompasses Leon2/Leon3 based CPU board and standard Space-qualified interfaces for the exchange commands and data between ICU and X-IFU subsystems. Alternative architecture, arranged around a powerful PowerPC-based CPU, is also briefly presented, with the aim of endowing the system with enhanced hardware resources and processing power capability, for the handling of control and science data processing tasks not defined yet at this stage of the mission study

    VSI: the VLTI spectro-imager

    Full text link
    The VLTI Spectro Imager (VSI) was proposed as a second-generation instrument of the Very Large Telescope Interferometer providing the ESO community with spectrally-resolved, near-infrared images at angular resolutions down to 1.1 milliarcsecond and spectral resolutions up to R=12000. Targets as faint as K=13 will be imaged without requiring a brighter nearby reference object. The unique combination of high-dynamic-range imaging at high angular resolution and high spectral resolution enables a scientific program which serves a broad user community and at the same time provides the opportunity for breakthroughs in many areas of astrophysic including: probing the initial conditions for planet formation in the AU-scale environments of young stars; imaging convective cells and other phenomena on the surfaces of stars; mapping the chemical and physical environments of evolved stars, stellar remnants, and stellar winds; and disentangling the central regions of active galactic nuclei and supermassive black holes. VSI will provide these new capabilities using technologies which have been extensively tested in the past and VSI requires little in terms of new infrastructure on the VLTI. At the same time, VSI will be able to make maximum use of new infrastructure as it becomes available; for example, by combining 4, 6 and eventually 8 telescopes, enabling rapid imaging through the measurement of up to 28 visibilities in every wavelength channel within a few minutes. The current studies are focused on a 4-telescope version with an upgrade to a 6-telescope one. The instrument contains its own fringe tracker and tip-tilt control in order to reduce the constraints on the VLTI infrastructure and maximize the scientific return.Comment: 12 pages, to be published in Proc. SPIE conference 7013 "Optical and Infrared Interferometry", Schoeller, Danchi, and Delplancke, F. (eds.). See also http://vsi.obs.ujf-grenoble.f

    Milli-arcsecond astrophysics with VSI, the VLTI spectro-imager in the ELT era

    Get PDF
    Nowadays, compact sources like surfaces of nearby stars, circumstellar environments of stars from early stages to the most evolved ones and surroundings of active galactic nuclei can be investigated at milli-arcsecond scales only with the VLT in its interferometric mode. We propose a spectro-imager, named VSI (VLTI spectro-imager), which is capable to probe these sources both over spatial and spectral scales in the near-infrared domain. This instrument will provide information complementary to what is obtained at the same time with ALMA at different wavelengths and the extreme large telescopes.Comment: 8 pages. To be published in the proceedings of the ESO workshop "Science with the VLT in the ELT Era", held in Garching (Germany) on 8-12 October 2007, A. Moorwood edito

    System overview of the VLTI Spectro-Imager

    Full text link
    The VLTI Spectro Imager project aims to perform imaging with a temporal resolution of 1 night and with a maximum angular resolution of 1 milliarcsecond, making best use of the Very Large Telescope Interferometer capabilities. To fulfill the scientific goals (see Garcia et. al.), the system requirements are: a) combining 4 to 6 beams; b) working in spectral bands J, H and K; c) spectral resolution from R= 100 to 12000; and d) internal fringe tracking on-axis, or off-axis when associated to the PRIMA dual-beam facility. The concept of VSI consists on 6 sub-systems: a common path distributing the light between the fringe tracker and the scientific instrument, the fringe tracker ensuring the co-phasing of the array, the scientific instrument delivering the interferometric observables and a calibration tool providing sources for internal alignment and interferometric calibrations. The two remaining sub-systems are the control system and the observation support software dedicated to the reduction of the interferometric data. This paper presents the global concept of VSI science path including the common path, the scientific instrument and the calibration tool. The scientific combination using a set of integrated optics multi-way beam combiners to provide high-stability visibility and closure phase measurements are also described. Finally we will address the performance budget of the global VSI instrument. The fringe tracker and scientific spectrograph will be shortly described

    Euclid Collaboration IV: Impact of Undetected Galaxies on Weak-Lensing Shear Measurements

    Get PDF
    In modern weak-lensing surveys, the common approach to correct for residual systematic biases in the shear is to calibrate shape measurement algorithms using simulations. These simulations must fully capture the complexity of the observations to avoid introducing any additional bias. In this paper we study the importance of faint galaxies below the observational detection limit of a survey. We simulate simplified Euclid VIS images including and excluding this faint population, and measure the shift in the multiplicative shear bias between the two sets of simulations. We measure the shear with three different algorithms: a moment-based approach, model fitting, and machine learning. We find that for all methods, a spatially uniform random distribution of faint galaxies introduces a shear multiplicative bias of the order of a few times 10310^{-3}. This value increases to the order of 10210^{-2} when including the clustering of the faint galaxies, as measured in the Hubble Space Telescope Ultra-Deep Field. The magnification of the faint background galaxies due to the brighter galaxies along the line of sight is found to have a negligible impact on the multiplicative bias. We conclude that the undetected galaxies must be included in the calibration simulations with proper clustering properties down to magnitude 28 in order to reach a residual uncertainty on the multiplicative shear bias calibration of a few times 10410^{-4}, in line with the 2×1032\times10^{-3} total accuracy budget required by the scientific objectives of the Euclid survey. We propose two complementary methods for including faint galaxy clustering in the calibration simulations.Comment: Version published in A&

    Mid-infrared sizes of circumstellar disks around Herbig Ae/Be stars measured with MIDI on the VLTI

    Get PDF
    We present the first long baseline mid-infrared interferometric observations of the circumstellar disks surrounding Herbig Ae/Be stars. The observations were obtained using the mid-infrared interferometric instrument MIDI at the European Southern Observatory (ESO) Very Large Telescope Interferometer VLTI on Cerro Paranal. The 102 m baseline given by the telescopes UT1 and UT3 was employed, which provides a maximum full spatial resolution of 20 milli-arcsec (mas) at a wavelength of 10 μm. The interferometric signal was spectrally dispersed at a resolution of 30, giving spectrally resolved visibility information from 8 μm to 13.5 μm. We observed seven nearby Herbig Ae/Be stars and resolved all objects. The warm dust disk of HD 100546 could even be resolved in single-telescope imaging. Characteristic dimensions of the emitting regions at 10 μm are found to be from 1 AU to 10 AU. The 10 μm sizes of our sample stars correlate with the slope of the 10–25 μm infrared spectrum in the sense that the reddest objects are the largest ones. Such a correlation would be consistent with a different geometry in terms of flaring or flat (self-shadowed) disks for sources with strong or moderate mid-infrared excess, respectively. We compare the observed spectrally resolved visibilities with predictions based on existing models of passive centrally irradiated hydrostatic disks made to fit the SEDs of the observed stars. We find broad qualitative agreement of the spectral shape of visibilities corresponding to these models with our observations. Quantitatively, there are discrepancies that show the need for a next step in modelling of circumstellar disks, satisfying both the spatial constraints such as are now available from the MIDI observations and the flux constraints from the SEDs in a consistent way

    Euclid: the selection of quiescent and star-forming galaxies using observed colours

    Get PDF
    The Euclid mission will observe well over a billion galaxies out to z ∼ 6 and beyond. This will offer an unrivalled opportunity to investigate several key questions for understanding galaxy formation and evolution. The first step for many of these studies will be the selection of a sample of quiescent and star-forming galaxies, as is often done in the literature by using well-known colour techniques such as the ‘UVJ’ diagram. However, given the limited number of filters available for the Euclid telescope, the recovery of such rest-frame colours will be challenging. We therefore investigate the use of observed Euclid colours, on their own and together with ground-based u-band observations, for selecting quiescent and star-forming galaxies. The most efficient colour combination, among the ones tested in this work, consists of the (u − VIS) and (VIS − J) colours. We find that this combination allows users to select a sample of quiescent galaxies complete to above ∼70 per cent and with less than 15 per cent contamination at redshifts in the range 0.75 65 per cent completeness level and contamination below 20 per cent at 1 < z < 2 for finding quiescent galaxies. In comparison, the sample of quiescent galaxies selected with the traditional UVJ technique is only ∼20 per cent complete at z < 3, when recovering the rest-frame colours using mock Euclid observations. This shows that our new methodology is the most suitable one when only Euclid bands, along with u-band imaging, are available

    Euclid: the selection of quiescent and star-forming galaxies using observed colours

    Get PDF
    The Euclid mission will observe well over a billion galaxies out to z ∼ 6 and beyond. This will offer an unrivalled opportunity to investigate several key questions for understanding galaxy formation and evolution. The first step for many of these studies will be the selection of a sample of quiescent and star-forming galaxies, as is often done in the literature by using well-known colour techniques such as the ‘UVJ’ diagram. However, given the limited number of filters available for the Euclid telescope, the recovery of such rest-frame colours will be challenging. We therefore investigate the use of observed Euclid colours, on their own and together with ground-based u-band observations, for selecting quiescent and star-forming galaxies. The most efficient colour combination, among the ones tested in this work, consists of the (u − VIS) and (VIS − J) colours. We find that this combination allows users to select a sample of quiescent galaxies complete to above ∼70 per cent and with less than 15 per cent contamination at redshifts in the range 0.75 65 per cent completeness level and contamination below 20 per cent at 1 < z < 2 for finding quiescent galaxies. In comparison, the sample of quiescent galaxies selected with the traditional UVJ technique is only ∼20 per cent complete at z < 3, when recovering the rest-frame colours using mock Euclid observations. This shows that our new methodology is the most suitable one when only Euclid bands, along with u-band imaging, are available

    Euclid: The reduced shear approximation and magnification bias for Stage IV cosmic shear experiments

    Get PDF
    Context. Stage IV weak lensing experiments will offer more than an order of magnitude leap in precision. We must therefore ensure that our analyses remain accurate in this new era. Accordingly, previously ignored systematic effects must be addressed. Aims. In this work, we evaluate the impact of the reduced shear approximation and magnification bias on information obtained from the angular power spectrum. To first-order, the statistics of reduced shear, a combination of shear and convergence, are taken to be equal to those of shear. However, this approximation can induce a bias in the cosmological parameters that can no longer be neglected. A separate bias arises from the statistics of shear being altered by the preferential selection of galaxies and the dilution of their surface densities in high-magnification regions. Methods. The corrections for these systematic effects take similar forms, allowing them to be treated together. We calculated the impact of neglecting these effects on the cosmological parameters that would be determined from Euclid, using cosmic shear tomography. To do so, we employed the Fisher matrix formalism, and included the impact of the super-sample covariance. We also demonstrate how the reduced shear correction can be calculated using a lognormal field forward modelling approach. Results. These effects cause significant biases in Ωm, δ8, ns, ΩDE, w0, and wa of -0:53δ, 0:43δ, -0:34δ, 1:36δ, -0:68δ, and 1:21δ, respectively. We then show that these lensing biases interact with another systematic effect: The intrinsic alignment of galaxies. Accordingly, we have developed the formalism for an intrinsic alignment-enhanced lensing bias correction. Applying this to Euclid, we find that the additional terms introduced by this correction are sub-dominant
    corecore