7 research outputs found

    A multi-proxy long-term ecological investigation into the development of a late Holocene calcareous spring-fed fen ecosystem (Raganu Mire) and boreal forest at the SE Baltic coast (Latvia)

    No full text
    The calcareous substrate of spring-fed fens makes them unique islands of biodiversity, hosting endangered, vulnerable, and protected vascular plants. Hence, spring-fed fens ecosystems require special conservation attention because many of them are destroyed (e.g. drained, forested) and it is extremely difficult or even impossible to restore the unique hydrogeological and geochemical conditions enabling their function. The long-term perspective of paleoecological studies allows indication of former wetland ecosystem states and provides understanding of their development over millennia. To examine the late Holocene dynamics of a calcareous spring-fed fen (Raganu Mire) ecosystem on the Baltic Sea coast (Latvia) in relation to environmental changes, substrate and human activity, we have undertaken high-resolution analyses of plant macrofossils, pollen, mollusc, stable carbon (δ13C) and oxygen (δ18O) isotopes combined with radiocarbon dating (AMS) in three coring locations. Our study revealed that peat deposits began accumulating ca. 7000 cal. yr BP and calcareous deposits (tufa) from 1450 cal. yr BP, coinciding with regional hydrological changes. Several fire events occurred between 4000 and 1600 cal. yr BP, which appeared to have had a limited effect on local vegetation. The most significant changes in the forest and peatland ecosystems were at 3200 cal. yr BP associated with a dry climate stage and high fire activity, and then between 1400 and 500 cal. yr BP potentially associated with temperature changes during the Medieval Climate Anomaly (MCA) and Little Ice Age. Hydrological disturbances in the peatland catchment from 1400 cal. yr BP were most likely strengthened by human activity (deforestation) in this region. The relationship between the development of this peatland and changes in its catchment area, such as land cover changes or fluctuations in groundwater levels, suggest that protection and restoration of spring-fed fen ecosystems should also include the surrounding catchment. The presence of calcareous sediments, as well as appropriate temperature and local hydrological conditions appear to be the most crucial factors controlling Cladium marisus populations in our site - currently at the eastern limit of its distribution in Europe

    Habitat-based biodiversity responses to macroclimate and edaphic factors in European fen ecosystems

    No full text
    : Understanding large-scale drivers of biodiversity in palustrine wetlands is challenging due to the combined effects of macroclimate and local edaphic conditions. In boreal and temperate fen ecosystems, the influence of macroclimate on biodiversity is modulated by hydrological settings across habitats, making it difficult to assess their vulnerability to climate change. Here, we investigate the influence of macroclimate and edaphic factors on three Essential Biodiversity Variables across eight ecologically defined habitats that align with ecosystem classifications and red lists. We used 27,555 vegetation plot samples from European fens to assess the influence of macroclimate and groundwater pH predictors on the geographic distribution of each habitat type. Additionally, we modeled the relative influence of macroclimate, water pH, and water table depth on community species richness and composition, focusing on 309 plant specialists. Our models reveal strong effects of mean annual temperature, diurnal thermal range, and summer temperature on biodiversity variables, with contrasting differences among habitats. While macroclimatic factors primarily shape geographic distributions and species richness, edaphic factors emerge as the primary drivers of composition for vascular plants and bryophytes. Annual precipitation exhibits non-linear effects on fen biodiversity, with varying impact across habitats with different hydrological characteristics, suggesting a minimum requirement of 600 mm of annual precipitation for the occurrence of fen ecosystems. Our results anticipate potential impacts of climate warming on European fens, with predictable changes among habitat types and geographic regions. Moreover, we provide evidence that the drivers of biodiversity in boreal and temperate fens are closely tied to the ecological characteristics of each habitat type and the dispersal abilities of bryophytes and vascular plants. Given that the influence of macroclimate and edaphic factors on fen ecosystems is habitat specific, climate change research and conservation actions should consider ecological differentiation within functional IUCN ecosystems at continental and regional scales

    Formalized classification of the class Montio-Cardaminetea in Europe : towards a consistent typology of spring vegetation

    No full text
    The class Montio-Cardaminetea includes vegetation of springs with constant water flow. These habitats, which function as islands for highly specialized and sensitive biota, are endangered by ongoing landscape and climatic changes. Although a harmonized classification into vegetation units is necessary for effective habitat conservation, there is currently no synthetic classification of the class Montio-Cardaminetea. Here a large set of vegetation-plot records was obtained from national and private databases. The aim was to validate the EuroVegChecklist classification scheme, search for additional ecologically meaningful vegetation types and develop an automatic system for classifying new plots from Europe. We formally defined the cores of eight of the ten EuroVegChecklist alliances: Caricion remotae, Cratoneurion commutati, Lycopodo europaei-Cratoneurion commutati, Epilobio nutantis-Montion, Koenigio- Microjuncion, Mniobryo-Epilobion hornemanii, Philonotidion seriatae (Cardamino-Montion) and Swertio perennis-Anisothecion squarrosi, which were also reproduced by unsupervised classifications. Both unsupervised and semi-supervised classifications further suggested two alliances not previously recognized in the EuroVegChecklist: Anthelion julaceae (liverwort- dominated subalpine to alpine springs in highly oceanic regions in Britain) and Cratoneuro filicini-Calthion laetae (mesotrophic herb-rich subalpine and alpine springs). The unsupervised classifications mainly reflected the base saturation gradient, distinguishing between calcareous and non-calcareous springs. Therefore, it is suggested the order Montio-Cardaminetalia, which is broadly delimited in the EuroVegChecklist, be divided into two separate orders and the following three orders should be distinguished within the class Montio-Cardaminetea: Cardamino-Chrysosplenietalia (non-calcareous forest springs; Caricion remotae), Cardamino-Cratoneuretalia (calcareous springs; Cratoneurion commutati, Lycopodo europaei-Cratoneurion commutati) and Montio-Cardaminetalia (non-calcareous non-forest springs; all other alliances)

    Regional variability in peatland burning at mid-to high-latitudes during the Holocene

    No full text
    Northern peatlands store globally-important amounts of carbon in the form of partly decomposed plant detritus. Drying associated with climate and land-use change may lead to increased fire frequency and severity in peatlands and the rapid loss of carbon to the atmosphere. However, our understanding of the patterns and drivers of peatland burning on an appropriate decadal to millennial timescale relies heavily on individual site-based reconstructions. For the first time, we synthesise peatland macrocharcoal records from across North America, Europe, and Patagonia to reveal regional variation in peatland burning during the Holocene. We used an existing database of proximal sedimentary charcoal to represent regional burning trends in the wider landscape for each region. Long-term trends in peatland burning appear to be largely climate driven, with human activities likely having an increasing influence in the late Holocene. Warmer conditions during the Holocene Thermal Maximum (∼9–6 cal. ka BP) were associated with greater peatland burning in North America's Atlantic coast, southern Scandinavia and the Baltics, and Patagonia. Since the Little Ice Age, peatland burning has declined across North America and in some areas of Europe. This decline is mirrored by a decrease in wider landscape burning in some, but not all sub-regions, linked to fire-suppression policies, and landscape fragmentation caused by agricultural expansion. Peatlands demonstrate lower susceptibility to burning than the wider landscape in several instances, probably because of autogenic processes that maintain high levels of near-surface wetness even during drought. Nonetheless, widespread drying and degradation of peatlands, particularly in Europe, has likely increased their vulnerability to burning in recent centuries. Consequently, peatland restoration efforts are important to mitigate the risk of peatland fire under a changing climate. Finally, we make recommendations for future research to improve our understanding of the controls on peatland fires

    Regional variability in peatland burning at mid-to high-latitudes during the Holocene

    Get PDF
    Northern peatlands store globally-important amounts of carbon in the form of partly decomposed plant detritus. Drying associated with climate and land-use change may lead to increased fire frequency and severity in peatlands and the rapid loss of carbon to the atmosphere. However, our understanding of the patterns and drivers of peatland burning on an appropriate decadal to millennial timescale relies heavily on individual site-based reconstructions. For the first time, we synthesise peatland macrocharcoal re-cords from across North America, Europe, and Patagonia to reveal regional variation in peatland burning during the Holocene. We used an existing database of proximal sedimentary charcoal to represent regional burning trends in the wider landscape for each region. Long-term trends in peatland burning appear to be largely climate driven, with human activities likely having an increasing influence in the late Holocene. Warmer conditions during the Holocene Thermal Maximum (similar to 9e6 cal. ka BP) were associated with greater peatland burning in North America's Atlantic coast, southern Scandinavia and the Baltics, and Patagonia. Since the Little Ice Age, peatland burning has declined across North America and in some areas of Europe. This decline is mirrored by a decrease in wider landscape burning in some, but not all sub-regions, linked to fire-suppression policies, and landscape fragmentation caused by agricultural expansion. Peatlands demonstrate lower susceptibility to burning than the wider landscape in several instances, probably because of autogenic processes that maintain high levels of near-surface wetness even during drought. Nonetheless, widespread drying and degradation of peatlands, particularly in Europe, has likely increased their vulnerability to burning in recent centuries. Consequently, peatland restoration efforts are important to mitigate the risk of peatland fire under a changing climate. Finally, we make recommendations for future research to improve our understanding of the controls on peatland fires.(c) 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe
    corecore