1,182 research outputs found

    Circumstellar HI and CO around the carbon stars V1942 Sgr and V CrB

    Full text link
    Context. The majority of stars that leave the main sequence are undergoing extensive mass loss, in particular during the asymptotic giant branch (AGB) phase of evolution. Observations show that the rate at which this phenomenon develops differs highly from source to source, so that the time-integrated mass loss as a function of the initial conditions (mass, metallicity, etc.) and of the stage of evolution is presently not well understood. Aims. We are investigating the mass loss history of AGB stars by observing the molecular and atomic emissions of their circumstellar envelopes. Methods. In this work we have selected two stars that are on the thermally pulsing phase of the AGB (TP-AGB) and for which high quality data in the CO rotation lines and in the atomic hydrogen line at 21 cm could be obained. Results. V1942 Sgr, a carbon star of the Irregular variability type, shows a complex CO line profile that may originate from a long-lived wind at a rate of ~ 10^-7 Msol/yr, and from a young (< 10^4 years) fast outflow at a rate of ~ 5 10^-7 Msol/yr. Intense HI emission indicates a detached shell with 0.044 Msol of hydrogen. This shell probably results from the slowing-down, by surrounding matter, of the same long-lived wind observed in CO that has been active during ~ 6 10^5 years. On the other hand, the carbon Mira V CrB is presently undergoing mass loss at a rate of 2 10^-7 Msol/yr, but was not detected in HI. The wind is mostly molecular, and was active for at most 3 10^4 years, with an integrated mass loss of at most 6.5 10^-3 Msol. Conclusions. Although both sources are carbon stars on the TP-AGB, they appear to develop mass loss under very different conditions, and a high rate of mass loss may not imply a high integrated mass loss.Comment: Accepted for publication in Astron. Astrophy

    HI Observations of the Asymptotic Giant Branch Star X Herculis: Discovery of an Extended Circumstellar Wake Superposed on a Compact High-Velocity Cloud

    Full text link
    We report HI 21-cm line observations of the AGB star X Her obtained with the Green Bank Telescope (GBT) and the Very Large Array (VLA). We have detected HI emission totaling M_HI=2.1e-03 M_sun associated with the circumstellar envelope of the star. The HI distribution exhibits a head-tail morphology, similar to those previously observed around Mira and RS Cnc. The tail extends ~6.0' (0.24 pc) in the plane of the sky, along the direction of the star's space motion. We also detect a velocity gradient of ~6.5 km/s across the envelope, consistent with the HI tracing a turbulent wake that arises from the motion of a mass-losing star through the ISM. GBT mapping of a 2x2deg region around X Her reveals that the star lies (in projection) near the periphery of a much larger HI cloud that also exhibits signatures of ISM interaction. The properties of the cloud are consistent with those of compact high-velocity clouds. Using CO observations, we have placed an upper limit on its molecular gas content of N_H2<1.3e20 cm^-2. Although the distance to the cloud is poorly constrained, the probability of a chance coincidence in position, velocity, and apparent position angle of space motion between X Her and the cloud is extremely small, suggesting a possible physical association. However, the large HI mass of the cloud (~>2.4~M_sun) and the blueshift of its mean velocity relative to X Her are inconsistent with an origin tied directly to stellar ejection. (abridged)Comment: Accepted to AJ; 47 pages, 15 figures; version with full resolution figures available at http://www.haystack.mit.edu/hay/staff/lmatthew/matthews_XHer.pd

    Discrimination of three genetically close Aspergillus species by using high resolution melting analysis applied to indoor air as case study.

    Full text link
    peer reviewedBACKGROUND: Indoor air pollution caused by fungal contamination is suspected to have a public health impact. Monitoring of the composition of the indoor airborne fungal contaminants is therefore important. To avoid problems linked to culture-dependent protocols, molecular methods are increasingly being proposed as an alternative. Among these molecular methods, the polymerase chain reaction (PCR) and the real-time PCR are the most frequently used tools for indoor fungal detection. However, even if these tools have demonstrated their appropriate performance, some of them are not able to discriminate between species which are genetically close. A solution to this could be the use of a post-qPCR high resolution melting (HRM) analysis, which would allow the discrimination of these species based on the highly accurate determination of the difference in melting temperature of the obtained amplicon. In this study, we provide a proof-of-concept for this approach, using a dye adapted version of our previously developed qPCR SYBR(R)Green method to detect Aspergillus versicolor in indoor air, an important airborne fungus in terms of occurrence and cause of health problems. Despite the good performance observed for that qPCR method, no discrimination could previously be made between A. versicolor, Aspergillus creber and Aspergillus sydowii. METHODS: In this study, we developed and evaluated an HRM assay for the discrimination between A. versicolor, Aspergillus creber and Aspergillus sydowii. RESULTS: Using HRM analysis, the discrimination of the 3 Aspergillus species could be made. No false positive, nor false negatives were observed during the performance assessment including 20 strains of Aspergillus. The limit of detection was determined for each species i.e., 0.5 pg of gDNA for A. creber and A. sydowii, and 0.1 pg of gDNA for A. versicolor. The HRM analysis was also successfully tested on environmental samples. CONCLUSION: We reported the development of HRM tools for the discrimination of A. versicolor, A. creber and A. sydowii. However, this study could be considered as a study case demonstrating that HRM based on existing qPCR assays, allows a more accurate identification of indoor air contaminants. This contributes to an improved insight in the diversity of indoor airborne fungi and hence, eventually in the causal link with health problems

    Dynamical stability analysis of the HD202206 system and constraints to the planetary orbits

    Full text link
    Long-term precise Doppler measurements with the CORALIE spectrograph revealed the presence of two massive companions to the solar-type star HD202206. Although the three-body fit of the system is unstable, it was shown that a 5:1 mean motion resonance exists close to the best fit, where the system is stable. We present here an extensive dynamical study of the HD202206 system aiming at constraining the inclinations of the two known companions, from which we derive possible ranges of value for the companion masses. We study the long term stability of the system in a small neighborhood of the best fit using Laskar's frequency map analysis. We also introduce a numerical method based on frequency analysis to determine the center of libration mode inside a mean motion resonance. We find that acceptable coplanar configurations are limited to inclinations to the line of sight between 30 and 90 degrees. This limits the masses of both companions to roughly twice the minimum. Non coplanar configurations are possible for a wide range of mutual inclinations from 0 to 90 degrees, although ΔΩ=0[π]\Delta\Omega = 0 [\pi] configurations seem to be favored. We also confirm the 5:1 mean motion resonance to be most likely. In the coplanar edge-on case, we provide a very good stable solution in the resonance, whose χ2\chi^2 does not differ significantly from the best fit. Using our method to determine the center of libration, we further refine this solution to obtain an orbit with a very low amplitude of libration, as we expect dissipative effects to have dampened the libration.Comment: 14 pages, 18 figure

    The HARPS search for southern extra-solar planets XIX. Characterization and dynamics of the GJ876 planetary system

    Full text link
    Precise radial-velocity measurements for data acquired with the HARPS spectrograph infer that three planets orbit the M4 dwarf star GJ876. In particular, we confirm the existence of planet "d", which orbits every 1.93785 days. We find that its orbit may have significant eccentricity (e=0.14), and deduce a more accurate estimate of its minimum mass of 6.3 Earth masses. Dynamical modeling of the HARPS measurements combined with literature velocities from the Keck Observatory strongly constrain the orbital inclinations of the "b" and "c" planets. We find that i_b = 48.9 degrees and i_c = 48.1 degrees, which infers the true planet masses of M_b = 2.64 Jupiter masses and M_c = 0.83 Jupiter masses, respectively. Radial velocities alone, in this favorable case, can therefore fully determine the orbital architecture of a multi-planet system, without the input from astrometry or transits. The orbits of the two giant planets are nearly coplanar, and their 2:1 mean motion resonance ensures stability over at least 5 Gyr. The libration amplitude is smaller than 2 degrees, suggesting that it was damped by some dissipative process during planet formation. The system has space for a stable fourth planet in a 4:1 mean motion resonance with planet "b", with a period around 15 days. The radial velocity measurements constrain the mass of this possible additional planet to be at most that of the Earth.Comment: 10 pages, 10 figures, accepted for publication in Astronomy & Astrophysic

    The enrichment of an alkaliphilic biofilm consortia capable of the anaerobic degradation of isosaccharinic acid from cellulosic materials incubated within an anthropogenic, hyperalkaline environment.

    Get PDF
    Anthropogenic hyper-alkaline sites provide an environment that is analogous to proposed cementitious geological disposal facilities (GDF) for radioactive waste. Under anoxic, alkaline conditions cellulosic wastes will hydrolyse to a range of cellulose degradation products (CDP) dominated by isosaccharinic acids (ISA). In order to investigate the potential for microbial activity in a cementitious GDF, cellulose samples were incubated in the alkaline (∼pH 12), anaerobic zone of a lime kiln waste site. Following retrieval, these samples had undergone partial alkaline hydrolysis and were colonised by a Clostridia dominated biofilm community, where hydrogenotrophic, alkaliphilic methanogens were also present. When these samples were used to establish an alkaline CDP fed microcosm, the community shifted away from Clostridia, methanogens became undetectable and a flocculate community dominated by Alishewanella sp. established. These flocs were composed of bacteria embedded in polysaccharides and protein stabilised by extracellular DNA. This community was able to degrade all forms of ISA with >60% of the carbon flow being channelled into extracellular polymeric substance (EPS) production. This study demonstrated that alkaliphilic microbial communities can degrade the CDP associated with some radioactive waste disposal concepts at pH 11. These communities divert significant amounts of degradable carbon to EPS formation, suggesting that EPS has a central role in the protection of these communities from hyper-alkaline conditions

    Cognitive compensatory processes of older, clinically fit patients with hematologic malignancies undergoing chemotherapy: A longitudinal cohort study

    Full text link
    peer reviewedObjective: Despite the well-known negative impacts of cancer and anticancer therapies on cognitive performance, little is known about the cognitive compensatory processes of older patients with cancer. This study was designed to investigate the cognitive compensatory processes of older, clinically fit patients with hematologic malignancies undergoing chemotherapy. Methods: We assessed 89 consecutive patients (age ≥ 65 y) without severe cognitive impairment and 89 age-, sex-, and education level-matched healthy controls. Cognitive compensatory processes were investigated by (1) comparing cognitive performance of patients and healthy controls in novel (first exposure to cognitive tasks) and non-novel (second exposure to the same cognitive tasks) contexts, and (2) assessing psychological factors that may facilitate or inhibit cognitive performance, such as motivation, psychological distress, and perceived cognitive performance. We assessed cognitive performance with the Trail-Making, Digit Span and FCSR-IR tests, psychological distress with the Hospital Anxiety and Depression Scale, and perceived cognitive performance with the FACT-Cog questionnaire. Results: In novel and non-novel contexts, average cognitive performances of healthy controls were higher than those of patients and were associated with motivation. Cognitive performance of patients was not associated with investigated psychological factors in the novel context but was associated with motivation and psychological distress in the non-novel context. Conclusions: Older, clinically fit patients with hematologic malignancies undergoing chemotherapy demonstrated lower cognitive compensatory processes compared to healthy controls. Reducing distress and increasing motivation may improve cognitive compensatory processes of patients in non-novel contexts. Copyright © 2017 John Wiley & Sons, Ltd

    Necrostatin-1 Analogues: Critical Issues on the Specificity, Activity and In Vivo Use in Experimental Disease Models

    Get PDF
    Necrostatin-1 (Nec-1) is widely used in disease models to examine the contribution of receptor-interacting protein kinase (RIPK) 1 in cell death and inflammation. We studied three Nec-1 analogs: Nec-1, the active inhibitor of RIPK1, Nec-1 inactive (Nec-1i), its inactive variant, and Nec-1 stable (Nec-1s), its more stable variant. We report that Nec-1 is identical to methyl-thiohydantoin-tryptophan, an inhibitor of the potent immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO). Both Nec-1 and Nec-1i inhibited human IDO, but Nec-1s did not, as predicted by molecular modeling. Therefore, Nec-1s is a more specific RIPK1 inhibitor lacking the IDO-targeting effect. Next, although Nec-1i was ∼100 × less effective than Nec-1 in inhibiting human RIPK1 kinase activity in vitro, it was only 10 times less potent than Nec-1 and Nec-1s in a mouse necroptosis assay and became even equipotent at high concentrations. Along the same line, in vivo, high doses of Nec-1, Nec-1i and Nec-1s prevented tumor necrosis factor (TNF)-induced mortality equally well, excluding the use of Nec-1i as an inactive control. Paradoxically, low doses of Nec-1 or Nec-1i, but not Nec -1s, even sensitized mice to TNF-induced mortality. Importantly, Nec-1s did not exhibit this low dose toxicity, stressing again the preferred use of Nec-1s in vivo. Our findings have important implications for the interpretation of Nec-1-based data in experimental disease models
    corecore