43 research outputs found

    Multiscale examination of cytoarchitectonic similarity and human brain connectivity

    Get PDF
    The human brain comprises an efficient communication network, with its macroscale connectome organization argued to be directly associated with the underlying microscale organization of the cortex. Here, we further examine this link in the human brain cortex by using the ultrahigh-resolution BigBrain dataset; 11,660 BigBrain profiles of laminar cell structure were extracted from the BigBrain data and mapped to the MRI based Desikan–Killiany atlas used for macroscale connectome reconstruction. Macroscale brain connectivity was reconstructed based on the diffusion-weighted imaging dataset from the Human Connectome Project and cross-correlated to the similarity of laminar profiles. We showed that the BigBrain profile similarity between interconnected cortical regions was significantly higher than those between nonconnected regions. The pattern of BigBrain profile similarity across the entire cortex was also found to be strongly correlated with the pattern of cortico-cortical connectivity at the macroscale. Our findings suggest that cortical regions with higher similarity in the laminar cytoarchitectonic patterns have a higher chance of being connected, extending the evidence for the linkage between macroscale connectome organization and microscale cytoarchitecture. The human brain connectome organization has been suggested to associate with cytoarchitecture similarity. Here, we utilize the state-of-the-art ultrahigh-resolution BigBrain dataset and diffusion-weighted imaging dataset to examine this association. Our results show that cortical regions with higher cytoarchitecture similarity are more likely to be connected, as well as connected by stronger white matter tracts. This work further extends our understanding of the interaction between macroscale cortico-cortical connectivity organization and microscale cortical cytoarchitecture

    Influence of Processing Pipeline on Cortical Thickness Measurement

    Get PDF
    In recent years, replicability of neuroscientific findings, specifically those concerning correlates of morphological properties of gray matter (GM), have been subject of major scrutiny. Use of different processing pipelines and differences in their estimates of the macroscale GM may play an important role in this context. To address this issue, here, we investigated the cortical thickness estimates of three widely used pipelines. Based on analyses in two independent large-scale cohorts, we report high levels of within-pipeline reliability of the absolute cortical thickness-estimates and comparable spatial patterns of cortical thickness-estimates across all pipelines. Within each individual, absolute regional thickness differed between pipelines, indicating that in-vivo thickness measurements are only a proxy of actual thickness of the cortex, which shall only be compared within the same software package and thickness estimation technique. However, at group level, cortical thickness-estimates correlated strongly between pipelines, in most brain regions. The smallest between-pipeline correlations were observed in para-limbic areas and insula. These regions also demonstrated the highest interindividual variability and the lowest reliability of cortical thickness-estimates within each pipeline, suggesting that structural variations within these regions should be interpreted with caution

    Genetic mapping and evolutionary analysis of human-expanded cognitive networks

    Get PDF
    Cognitive brain networks such as the default-mode network (DMN), frontoparietal network, and salience network, are key functional networks of the human brain. Here we show that the rapid evolutionary cortical expansion of cognitive networks in the human brain, and most pronounced the DMN, runs parallel with high expression of human-accelerated genes (HAR genes). Using comparative transcriptomics analysis, we present that HAR genes are differentially more expressed in higher-order cognitive networks in humans compared to chimpanzees and macaques and that genes with high expression in the DMN are involved in synapse and dendrite formation. Moreover, HAR and DMN genes show significant associations with individual variations in DMN functional activity, intelligence, sociability, and mental conditions such as schizophrenia and autism. Our results suggest that the expansion of higher-order functional networks subserving increasing cognitive properties has been an important locus of genetic changes in recent human brain evolution

    10Kin1day: A Bottom-Up Neuroimaging Initiative.

    Get PDF
    We organized 10Kin1day, a pop-up scientific event with the goal to bring together neuroimaging groups from around the world to jointly analyze 10,000+ existing MRI connectivity datasets during a 3-day workshop. In this report, we describe the motivation and principles of 10Kin1day, together with a public release of 8,000+ MRI connectome maps of the human brain

    Multimodal Connectomics in Psychiatry: Bridging Scales From Micro to Macro

    No full text
    The human brain is a highly complex system, with a large variety of microscale cellular morphologies and macroscale global properties. Working at multiple scales, it forms an efficient system for processing and integration of multimodal information. Studies have repeatedly demonstrated strong associations between modalities of both microscales and macroscales of brain organization. These consistent observations point toward potential common organization principles where regions with a microscale architecture supportive of a larger computational load have more and stronger connections in the brain network on the macroscale. Conversely, disruptions observed on one organizational scale could modulate the other. First neuropsychiatric micro-macro comparisons in, among other conditions, Alzheimer's disease and schizophrenia, have, for example, shown overlapping alterations across both scales. We give an overview of recent findings on associations between microscale and macroscale organization observed in the healthy brain, followed by a summary of microscale and macroscale findings reported in the context of brain disorders. We conclude with suggestions for future multiscale connectome comparisons linking multiple scales and modalities of organization and suggest how such comparisons could contribute to a more complete fundamental understanding of brain organization and associated disease-related alterations

    Cortical chemoarchitecture shapes macroscale effective functional connectivity patterns in macaque cerebral cortex

    No full text
    The mammalian cortex is a complex system of-at the microscale level-interconnected neurons and-at the macroscale level-interconnected areas, forming the infrastructure for local and global neural processing and information integration. While the effects of regional chemoarchitecture on local cortical activity are well known, the effect of local neurotransmitter receptor organization on the emergence of large scale region-to-region functional interactions remains poorly understood. Here, we examined reports of effective functional connectivity-as measured by the action of strychnine administration acting on the chemical balance of cortical areas-in relation to underlying regional variation in microscale neurotransmitter receptor density levels in the macaque cortex. Linking cortical variation in microscale receptor density levels to collated information on macroscale functional connectivity of the macaque cortex, we show macroscale patterns of effective corticocortical functional interactions-and in particular, the strength of connectivity of efferent macroscale pathways-to be related to the ratio of excitatory and inhibitory neurotransmitter receptor densities of cortical areas. Our findings provide evidence for the microscale chemoarchitecture of cortical areas to have a direct stimulating influence on the emergence of macroscale functional connectivity patterns in the mammalian brain

    The human connectome from an evolutionary perspective

    No full text
    The connectome describes the comprehensive set of neuronal connections of a species' central nervous system. Identifying the network characteristics of the human macroscale connectome and comparing these features with connectomes of other species provides insight into the evolution of human brain connectivity and its role in brain function. Several network properties of the human connectome are conserved across species, with emerging evidence also indicating potential human-specific adaptations of connectome topology. This review describes the human macroscale structural and functional connectome, focusing on common themes of brain wiring in the animal kingdom and network adaptations that may underlie human brain function. Evidence is drawn from comparative studies across a wide range of animal species, and from research comparing human brain wiring with that of non-human primates. Approaching the human connectome from a comparative perspective paves the way for network-level insights into the evolution of human brain structure and function

    Linking contemporary high resolution magnetic resonance imaging to the von economo legacy : A study on the comparison of MRI cortical thickness and histological measurements of cortical structure

    No full text
    The cerebral cortex is a distinctive part of the mammalian nervous system, displaying a spatial variety in cyto-, chemico-, and myelinoarchitecture. As part of a rich history of histological findings, pioneering anatomists von Economo and Koskinas provided detailed mappings on the cellular structure of the human cortex, reporting on quantitative aspects of cytoarchitecture of cortical areas. Current day investigations into the structure of human cortex have embraced technological advances in Magnetic Resonance Imaging (MRI) to assess macroscale thickness and organization of the cortical mantle in vivo. However, direct comparisons between current day MRI estimates and the quantitative measurements of early anatomists have been limited. Here, we report on a simple, but nevertheless important cross-analysis between the histological reports of von Economo and Koskinas on variation in thickness of the cortical mantle and MRI derived measurements of cortical thickness. We translated the von Economo cortical atlas to a subdivision of the commonly used Desikan-Killiany atlas (as part of the FreeSurfer Software package and a commonly used parcellation atlas in studies examining MRI cortical thickness). Next, values of "width of the cortical mantle" as provided by the measurements of von Economo and Koskinas were correlated to cortical thickness measurements derived from high-resolution anatomical MRI T1 data of 200+ subjects of the Human Connectome Project (HCP). Cross-correlation revealed a significant association between group-averaged MRI measurements of cortical thickness and histological recordings (r=0.54, P<0.001). Further validating such a correlation, we manually segmented the von Economo parcellation atlas on the standardized Colin27 brain dataset and applied the obtained three-dimensional von Economo segmentation atlas to the T1 data of each of the HCP subjects. Highly consistent with our findings for the mapping to the Desikan-Killiany regions, cross-correlation between in vivo MRI cortical thickness and von Economo histology-derived values of cortical mantle width revealed a strong positive association (r=0.62, P<0.001). Linking today's state-of-the-art T1-weighted imaging to early histological examinations our findings indicate that MRI technology is a valid method for in vivo assessment of thickness of human cortex. Hum Brain Mapp, 2015
    corecore