24 research outputs found

    Laser Interactions for the Synthesis and In Situ Diagnostics of Nanomaterials

    Full text link
    Laser interactions have traditionall been at thec center of nanomaterials science, providing highly nonequilibrium growth conditions to enable the syn- thesis of novel new nanoparticles, nanotubes, and nanowires with metastable phases. Simultaneously, lasers provide unique opportunities for the remote char- acterization of nanomaterial size, structure, and composition through tunable laser spectroscopy, scattering, and imaging. Pulsed lasers offer the opportunity, there- fore, to supply the required energy and excitation to both control and understand the growth processes of nanomaterials, providing valuable views of the typically nonequilibrium growth kinetics and intermediates involved. Here we illustrate the key challenges and progress in laser interactions for the synthesis and in situ diagnostics of nanomaterials through recent examples involving primarily carbon nanomaterials, including the pulsed growth of carbon nanotubes and graphene
    corecore