1,278 research outputs found
Mapping QTLs for mineral accumulation and shoot dry biomass under different Zn nutritional conditions in Chinese cabbage ( Brassica rapa L. ssp. pekinensis )
Abstract Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the most important vegetables in China. Genetic dissection of leaf mineral accumulation and tolerance to Zn stress is important for the improvement of the nutritional quality of Chinese cabbage by breeding. A mapping population with 183 doubled haploid (DH) lines was used to study the genetics of mineral accumulation and the growth response to Zn. The genetic map was constructed based on 203 AFLPs, 58 SSRs, 22 SRAPs and four ESTPs. The concentration of 11 minerals was determined in leaves for 142 DH lines grown in an open field. In addition shoot dry biomass (SDB) under normal, deficient and excessive Zn nutritional conditions were investigated in hydroponics experiments. Ten QTLs, each explaining 11.1¿17.1% of the Na, Mg, P, Al, Fe, Mn, Zn and Sr concentration variance, were identified by multiple-QTL model (MQM) mapping. One common QTL was found affecting SDB under normal, deficient and excessive Zn nutritional conditions. An additional QTL was detected for SDB under Zn excess stress only. These results offer insights into the genetic basis of leaf mineral accumulation and plant growth under Zn stress conditions in Chinese cabbag
Gene transcription analysis during interaction between potato and Ralstonia solanacearum
Bacterial wilt (BW) caused by Ralstonia solanacearum (Rs) is an important quarantine disease that spreads worldwide and infects hundreds of plant species. The BW defense response of potato is a complicated continuous process, which involves transcription of a battery of genes. The molecular mechanisms of potato-Rs interactions are poorly understood. In this study, we combined suppression subtractive hybridization and macroarray hybridization to identify genes that are differentially expressed during the incompatible interaction between Rs and potato. In total, 302 differentially expressed genes were identified and classified into 12 groups according to their putative biological functions. Of 302 genes, 81 were considered as Rs resistance-related genes based on the homology to genes of known function, and they have putative roles in pathogen recognition, signal transduction, transcription factor functioning, hypersensitive response, systemic acquired resistance, and cell rescue and protection. Additionally, 50 out of 302 genes had no match or low similarity in the NCBI databases, and they may represent novel genes. Of seven interesting genes analyzed via RNA gel blot and semi-quantitative RT-PCR, six were induced, one was suppressed, and all had different transcription patterns. The results demonstrate that the response of potato against Rs is rapid and involves the induction of numerous various genes. The genes identified in this study add to our knowledge of potato resistance to Rs
Cell nuclei detection using globally optimal active contours with shape prior
Cell nuclei detection in fluorescent microscopic images is an important and time consuming task for a wide range of biological applications. Blur, clutter, bleed through and partial occlusion of nuclei make this a challenging task for automated detection of individual nuclei using image analysis. This paper proposes a novel and robust detection method based on the active contour framework. The method exploits prior knowledge of the nucleus shape in order to better detect individual nuclei. The method is formulated as the optimization of a convex energy function. The proposed method shows accurate detection results even for clusters of nuclei where state of the art methods fail
Comparison of genetic diversity and growth traits among Fangzheng silver crucian carp (Carassius auratus gibelio) gynogenetic clones
The silver crucian carp (Carassius auratus gibelio), a gynogenetic teleost, is a promising model for the study of evolutionary genetics in vertebrates. We identified ten gynogenetic clones (FZ-I~FZ-X) from triploid silver crucian carp, collected from Fangzheng County in Heilongjiang Province, China, using microsatellite markers. The genetic diversity of these gynogenetic clones was analyzed using 52 microsatellite markers. A total of 413 alleles were detected and the length of fragments ranged from 96 to 340 bp. The number of alleles per locus varied from 2~19 (mean=7.9423). The observed heterozygosity at polymorphic loci ranged from 0.10~1.00 (mean=0.80). The average allele count per gynogenetic clone ranged from 1.9423~2.1923. The ratio of the polymorphic locus was from 71.15% (VII) to 84.61% (IX) per clone. The number of genotypes ranged from 2~10 per locus. Ten genotypes were observed by analyzing each of 14 microsatellites. As a result, each gynogenetic clone could be accurately identified. In addition, the growth traits, including body weight, length, and height, among five gynogenetic clones were compared. There was a significant difference among gynogenetic clones. Clone FZ-V exhibited the best growth traits, with the largest body weight (53.17±5.24 g), length (11.38±0.37 cm) and height (4.69±0.18 cm). Our results provide basic data for the identification of silver crucian carp gynogenetic clones and can be used as a guide genetic breeding programs
The short-time behaviour of a kinetic Ashkin-Teller model on the critical line
We simulate the kinetic Ashkin-Teller model with both ordered and disordered
initial states, evolving in contact with a heat-bath at the critical
temperature. The power law scaling behaviour for the magnetic order and
electric order are observed in the early time stage. The values of the critical
exponent vary along the critical line. Another dynamical exponent
is also obtained in the process.Comment: 14 pages LaTeX with 4 figures in postscrip
Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes
© 2018 The Authors. Published by Elsevier B.V. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of ∼10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low α separation energies for neutron-deficient Mo and Tc isotopes, making the formation of Zr–Nb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous νp-process simulations.Peer reviewe
Grain boundary effects on magnetotransport in bi-epitaxial films of LaSrMnO
The low field magnetotransport of LaSrMnO (LSMO) films
grown on SrTiO substrates has been investigated. A high qualtity LSMO film
exhibits anisotropic magnetoresistance (AMR) and a peak in the
magnetoresistance close to the Curie temperature of LSMO. Bi-epitaxial films
prepared using a seed layer of MgO and a buffer layer of CeO display a
resistance dominated by grain boundaries. One film was prepared with seed and
buffer layers intact, while a second sample was prepared as a 2D square array
of grain boundaries. These films exhibit i) a low temperature tail in the low
field magnetoresistance; ii) a magnetoconductance with a constant high field
slope; and iii) a comparably large AMR effect. A model based on a two-step
tunneling process, including spin-flip tunneling, is discussed and shown to be
consistent with the experimental findings of the bi-epitaxial films.Comment: REVTeX style; 14 pages, 9 figures. Figure 1 included in jpeg format
(zdf1.jpg); the eps was huge. Accepted to Phys. Rev.
Anomaly analysis of Hawking radiation from Kaluza-Klein black hole with squashed horizon
Considering gravitational and gauge anomalies at the horizon, a new method
that to derive Hawking radiations from black holes has been developed by
Wilczek et al. In this paper, we apply this method to non-rotating and rotating
Kaluza-Klein black holes with squashed horizon, respectively. For the rotating
case, we found that, after the dimensional reduction, an effective U(1) gauge
field is generated by an angular isometry. The results show that the gauge
current and energy-momentum tensor fluxes are exactly equivalent to Hawking
radiation from the event horizon.Comment: 15 pages, no figures, the improved version, accepted by Eur. Phys. J.
A study of charged kappa in
Based on events collected by BESII, the decay
is studied. In the invariant mass
spectrum recoiling against the charged , the charged
particle is found as a low mass enhancement. If a Breit-Wigner function of
constant width is used to parameterize the kappa, its pole locates at MeV/. Also in this channel,
the decay is observed for the first time.
Its branching ratio is .Comment: 14 pages, 4 figure
Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays
By analyzing about 33 data sample collected at and around 3.773
GeV with the BES-II detector at the BEPC collider, we directly measure the
branching fractions for the neutral and charged inclusive semimuonic decays
to be and , and determine the ratio of the two branching
fractions to be
- …
