148 research outputs found

    Urban blue space renovation and local resident and visitor well-being:A case study from Plymouth, UK

    Get PDF
    Observational studies have suggested that people with better access to attractive, safe, and inclusive blue spaces enjoy higher psychological well-being, with particular benefits for those living in deprived urban areas. However, intervention studies are scarce. To help bridge this gap we conducted a repeat cross-sectional study exploring local resident and visitor well-being before and after a small-scale intervention aimed at improving the quality of an urban beach area in a deprived neighbourhood in Plymouth, United Kingdom. Physical alterations were co-created with local stakeholders and residents, and accompanied by a series of on-site community events. Key outcomes were self-reported psychological well-being, satisfaction with personal safety and community belonging, and perceptions of site quality. Adjusted linear models showed that positive well-being (B = 7.42; 95% CI = 4.18–10.67) and life satisfaction (B = 0.40; 95% CI = 0.11–0.70) were both higher after the intervention compared to before, with associations for life satisfaction stronger among those who visited the site in the last four weeks. Associations with positive well-being were partially mediated by greater satisfaction with community belonging; and associations with life satisfaction were partially and independently mediated by greater satisfaction with personal safety and community belonging. Although caution needs to be taken due to the repeat cross-sectional design and the sampling of site visitors as well as local residents, the findings support the idea that environmental improvements to urban blue spaces can foster better psychological well-being, and underline the importance of community involvement in the process

    Extensive Liquid Meltwater Storage in Firn Within the Greenland Ice Sheet

    Get PDF
    The accelerating loss of mass from the Greenland ice sheet is a major contribution to current sea level rise. Increased melt water runoff is responsible for half of Greenlands mass loss increase. Surface melt has been increasing in extent and intensity, setting a record for surface area melt and runoff in 2012. The mechanisms and timescales involved in allowing surface melt water to reach the ocean where it can contribute to sea level rise are poorly understood. The potential capacity to store this water in liquid or frozen form in the firn (multi-year snow layer) is significant, and could delay its sea-level contribution. Here we describe direct observation of water within a perennial firn aquifer persisting throughout the winter in the southern ice sheet,where snow accumulation and melt rates are high. This represents a previously unknown storagemode for water within the ice sheet. Ice cores, groundairborne radar and a regional climatemodel are used to estimate aquifer area (70 plue or minus 10 x 10(exp 3) square kilometers ) and water table depth (5-50 m). The perennial firn aquifer represents a new glacier facies to be considered 29 in future ice sheet mass 30 and energy budget calculations

    Applying an ecosystem services framework on nature and mental health to recreational blue space visits across 18 countries

    Get PDF
    The effects of ‘nature’ on mental health and subjective well-being have yet to be consistently integrated into ecosystem service models and frameworks. To address this gap, we used data on subjective mental well-being from an 18-country survey to test a conceptual model integrating mental health with ecosystem services, initially proposed by Bratman et al. We analysed a range of individual and contextual factors in the context of 14,998 recreational visits to blue spaces, outdoor environments which prominently feature water. Consistent with the conceptual model, subjective mental well-being outcomes were dependent upon on a complex interplay of environmental type and quality, visit characteristics, and individual factors. These results have implications for public health and environmental management, as they may help identify the bluespace locations, environmental features, and key activities, that are most likely to impact well-being, but also potentially affect recreational demand on fragile aquatic ecosystems

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution

    A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies

    Get PDF
    Despite rapid advances in the identification of genes involved in disease, the predictive power of the genotype remains limited, in part owing to poorly understood effects of second-site modifiers. Here we demonstrate that a polymorphic coding variant of RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein-1 like), a ciliary gene mutated in Meckel-Gruber (MKS) and Joubert (JBTS) syndromes, is associated with the development of retinal degeneration in individuals with ciliopathies caused by mutations in other genes. As part of our resequencing efforts of the ciliary proteome, we identified several putative loss-of-function RPGRIP1L mutations, including one common variant, A229T. Multiple genetic lines of evidence showed this allele to be associated with photoreceptor loss in ciliopathies. Moreover, we show that RPGRIP1L interacts biochemically with RPGR, loss of which causes retinal degeneration, and that the Thr229-encoded protein significantly compromises this interaction. Our data represent an example of modification of a discrete phenotype of syndromic disease and highlight the importance of a multifaceted approach for the discovery of modifier alleles of intermediate frequency and effect.This work was supported by grants R01EY007961 from the National Eye Institute (H.K. and A.S.), R01HD04260 from the National Institute of Child Health and Development (N.K.), R01DK072301, R01DK075972 (N.K.), R01DK068306, R01DK064614, R01DK069274 (F.H.), NRSA fellowship F32 DK079541 (E.E.D.) from the National Institute of Diabetes, Digestive and Kidney disorders, Intramural program of NEI (A.S.), the Macular Vision Research Foundation (N.K.), the Foundation for Fighting Blindness (H.K., S.S.B., A.S. and N.K.), the Foundation for Fighting Blindness Canada (R.K.K.), Le Fonds de la recherche en sante du Québec (FRSQ) (R.K.K.), Research to Prevent Blindness (A.S.), Harold Falls Collegiate Professorship (A.S.), the Midwest Eye Banks and Transplantation Center (H.K.), the Searle Scholars Program (M.A.B.), the Deutsche Forschungsgemeinschaft (DFG grant BE 3910/4-1; C.B.) the UK Medical Research Council (grant number G0700073; C.A.J.), NIHR Biomedical Research Centre for Ophthalmology (S.S.B.) and EU-GENORET Grant LSHG-CT-2005-512036 (S.S.B.). F.H. is an investigator of the Howard Hughes Medical Institute (HHMI) and a Doris Duke Distinguished Clinical Scientist (DDCF)
    corecore