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 17 
The accelerating loss of mass from the Greenland ice sheet is a major contribution to current 18 

sea level rise1.  Increased meltwater runoff is responsible for half of Greenland’s mass loss 19 

increase2.  Surface melt has been increasing in extent and intensity, setting a record for surface 20 

area melt and runoff in 20123.  The mechanisms and timescales involved in allowing surface 21 

meltwater to reach the ocean where it can contribute to sea level rise are poorly understood. The 22 

potential capacity to store this water in liquid or frozen form in the firn (multi-year snow layer) is 23 

significant4, and could delay its sea-level contribution. Here we describe direct observation of 24 

water within a perennial firn aquifer persisting throughout the winter in the southern ice sheet, 25 

where snow accumulation and melt rates are high. This represents a previously unknown storage 26 

mode for water within the ice sheet.  Ice cores, ground/airborne radar and a regional climate 27 

model are used to estimate aquifer area (70 ± 10 x 103 km2) and water table depth (5-50 m).  The 28 
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perennial firn aquifer represents a new glacier facies to be considered in future ice sheet mass 29 

and energy budget calculations.  30 

The mass of liquid or refrozen meltwater that could be stored in firn pore space throughout 31 

the percolation zone of the entire ice sheet is estimated to be between 322 and 1,289 Gt4. In the 32 

western part of the ice sheet, the possibility of liquid water persisting within the upper ~10 m of 33 

the snow/firn5 or in moulins6 during winter is suspected. Discharge measurements at ice marginal 34 

streams indicate winter water release, suggesting that some meltwater may be stored englacially 35 

or at the bed and is released months after the end of the melt season7. However, there has been 36 

no account of directly observed liquid water in the firn persisting through the winter on the 37 

Greenland ice sheet. 38 

In April 2011, prior to seasonal surface melt onset, the Arctic Circle Traverse (ACT) 39 

expedition drilled into a liquid water layer in the upper 10 to 25 m of the firn in southeast 40 

Greenland. The ACT field party extracted four firn cores at sequentially lower elevations on the 41 

southeast coast (Fig. 1), where in situ snow accumulation observations were previously 42 

nonexistent. Below 1600 m in this area, spatially and temporally averaged accumulation rates of 43 

1-4 m w.e. a-1 are simulated by observationally-constrained regional climate models8, 9, 10. On 30 44 

April 2011, at ACT11-A2 (1559 m a.s.l.), a 10 cm diameter firn/ice coring drill extracted a ~1 m 45 

core segment from 10 m depth that was saturated with liquid water (Fig. 1). The following day, 3 46 

km to the east at ACT11-A (1589 m a.s.l.), liquid water was found at 25 m depth using the drill. 47 

The thickness of the water layer could not be measured because the drill is not designed to 48 

operate in water. Air temperatures were -15 ºC during drilling. During spring 2011, temperatures 49 

were below average and surface melt in the area did not commence until June that year11. 50 

Therefore, the liquid water found in the firn no doubt persisted throughout the winter. The other 51 
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two ACT cores were extracted at higher elevations nearby (1806 and 2081 m a.s.l.) and revealed 52 

no liquid water to the full depth of the 61 m drilling (Fig. 1).  53 

Ground penetrating radar (GPR, Supplementary Information) profiles were completed 54 

between the core sites, as well as 10 km below the lowest site. A strong contiguous return 55 

horizon persists over the lower 25 km portion of the transect (Fig 2). The horizon undulates 56 

between depths of 9 – 25 m and matches the depth of the water layer top found at both core sites 57 

to within < 1 m (the precision of identifying the depth is limited to the 1 m length core sections 58 

drilled). We are thus confident that the GPR is tracing the top of the water layer.  59 

The top of the water layer cuts across intermediate GPR horizons (Fig. 2), usually 60 

interpreted as corresponding with annual or event accumulation layers12, 13. Below the water 61 

layer horizon there are no coherent GPR horizons, which can be expected as minimal energy is 62 

returned from below a strong reflector with a high permittivity contrast such as water14. The 63 

bright horizon gradually fades at the 25 km location at a depth of ~27 m (Fig. 2), revealing 64 

internal firn layers to depths of ~50 m that are traceable up-glacier over the next 82 km to cores 65 

ACT11-B and C (Fig. 1). 66 

The NASA Operation Ice Bridge (OIB) airborne accumulation radar (AR) 15 overflew the 67 

core sites and the ground traverse GPR transect 11 days prior to the core drilling. A strong 68 

reflecting horizon is evident at the same location in the GPR transect [Supplementary Fig. S1]. 69 

The depth to the bright horizon from the GPR and AR agree within 2 m over the 25 km transect 70 

and the undulations are very similar [r2 = 0.95, Supplementary Fig. S2]. The depth differences 71 

may be attributed to lateral discrepancies in the transect locations (< 200 m), and differences in 72 

radar foot print size and radar frequency. Similar to the GPR data, the AR returns no obvious 73 

internal layering below the bright horizon [Supplementary Fig. S1]. Based on the depth 74 
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agreement and high correlation we conclude that the AR is capable of mapping the presence and 75 

depth to the top of the water layer within the firn.  76 

In 2011, prior to melt onset, NASA OIB AR gathered 40,512 km of horizontal flight line 77 

data over the GrIS (March 29 — May 16). All of these flight lines were examined for the 78 

presence of the water layer. It was identified and manually digitized in 843 km of these flight 79 

lines acquired between April 8-26, 2011 (Fig. 1). The water layer locations are concentrated in 80 

the southeast, but are evident in isolated locations in the south and southwest and on the Geikie 81 

Plateau (near 70° N, 25° W). The mean depth of the water layer top is 23 m with a range of 5 to 82 

50 m [Supplementary Figs. S3 and S6]. In general the depths are smaller in the southwest 83 

compared to the southeast, but are influenced by local surface slope (Fig. 2), similar to terrestrial 84 

groundwater and firn aquifers on temperate glaciers16, 17. Thus, we refer to this liquid water 85 

reservoir that persists throughout the winter as a perennial firn aquifer (PFA). Since the radar 86 

signal is not returning from below the top of the PFA, there is currently no direct measure of its 87 

thickness.  88 

The spatial distribution of the PFA suggests that its formation is associated with areas of 89 

sufficient surface melt coupled with high accumulation. We compare the PFA extent as 90 

determined by AR results with gridded climate fields. Here we use the accumulation field from 91 

the Calibrated Polar MM510 (Fig. 3) and output fields of accumulation, melt and rain from the 92 

regional atmospheric climate model RACMO2 [Supplementary Fig. S5]. RACMO2 includes an 93 

interactive (with the atmosphere) snow/firn/ice model8. In areas where the PFA is found, the 94 

mean accumulation rate is 1.24/2.22 m w. e. a-1 (10 and RACMO2, respectively). However, there 95 

is significant variability in the range of accumulation rate associated with the PFA 96 

[Supplementary Fig. S6]. (Supplementary Information for discussion of the differences in these 97 
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accumulation grids) Areas of high accumulation are found predominately in the southeast, but 98 

three other areas in the south and southwest are also identified with local accumulation maxima 99 

and also contain a PFA (Fig. 3). 100 

The spatial pattern of the PFA extent for April 2011 simulated by RACMO2 is very similar 101 

to the AR results, with a concentration in the southeast and the three areas in the south and 102 

southwest (Fig. 4). In RACMO2, a combination of high accumulation (> 800 mm yr-1) and a 103 

large liquid water production (snow melt plus rain > 650 mm yr-1) are necessary conditions for 104 

PFA formation [Supplementary Fig. S7]. Because RACMO2 performs well in detecting the PFA, 105 

we use it as a first order estimate of PFA spatial extent. Since the model lacks treatment of 106 

potentially significant firn processes, i.e. inhomogeneous vertical water flow (piping) which 107 

moves water to depth through cold snow/firn5, 18, 19 and horizontal water flow, which as Fig. 2 108 

shows is an important process, an estimate of PFA volume is not given here. For uncertainty in 109 

the modeled PFA extent we use the variability in annual minimum extents during 1992-2011, 110 

which are typically reached in late April at 70 ± 10 x 103 km2, [Supplementary Fig. S8]. After the 111 

onset of the melt season, extent of liquid water in the Greenland firn sharply increases, to reach 112 

500 ± 250 x 103 km2 in July, after which a gradual decrease is simulated. 113 

The formation process of the PFA is not completely understood; however, its spatial 114 

correspondence with high accumulation and melt rates (Fig. 3, Supplementary Fig. S7) leads to a 115 

general hypothesis intended to explain the broad pattern of PFA location.  From the RACMO2 116 

model results, we propose that high accumulation insulates the melt season’s liquid water layer 117 

within the firn from the cold season atmosphere, thereby preventing complete refreezing. This 118 

allows liquid water to persist throughout the winter until the next melt season, when the PFA 119 

may be recharged [movie S1].   120 
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The PFA represents a new glacier facies18 and a previously unidentified liquid water 121 

reservoir. Its location in the southeastern ice sheet is consistent with few surface lakes, compared 122 

to other sectors of the ice sheet20. The narrow (< 30 km) ablation area with minimal bare ice area 123 

in the southeast, due to the relatively high accumulation gradients and therefore steep ice slopes, 124 

does not accommodate lake basin formation with accompanying supra glacial stream networks 125 

and moulins delivering water toward the bed as prevalent along the western portion of the ice 126 

sheet. In its place, the deep firn layer provides an alternative liquid water reservoir in winter, 127 

which may exceed the mass of liquid water stored in supraglacial lakes. This contrast in liquid 128 

water storage mechanisms implies that surface mass balance, thermal properties of the ice, and 129 

effective water pressures at the bed and consequently ice dynamics in the southeast are likely 130 

very different from those in the more extensively studied western and northern Greenland ice 131 

sheet. The persistence of liquid water in the firn also has implications for the ice sheet energy. If 132 

atmospheric warming ceases, refreezing the liquid water requires a significant amount of 133 

additional energy before the firn layer can start to cool. The PFA could thus represent an 134 

increasingly important mass and energy reservoir, as both melt and accumulation on the 135 

Greenland ice sheet have increased in the past21 and are projected to increase in a future warming 136 

climate22. 137 

 138 

Methods 139 

GPR data were collected with a Geophysical Survey Systems, Inc. SIR-3000 controller and 140 

a 400 MHz center frequency antenna. The vertical resolution in firn is 35 cm12, 13, finer than the 141 

annual layering in this area. The sampling was set at four traces per second, 2048 samples per 142 

trace. To increase the signal-to-noise ratio an initial stacking of six traces was performed. Post 143 
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processing horizontal spatial smoothing involved averaging an additional eight traces, to increase 144 

the signal-to-noise ratio and minimize the influence of cm-scale vertical ice pipes or channels 145 

present in the percolation zone13. A time dependent gain was used to compensate for signal 146 

attenuation within the firn. The maximum two-way-travel time (TWT) range was set to 500 ns, 147 

yielding a ~0.24 ns sample interval and allowing scanning of the top ~46 m of the firn. Because 148 

the top of the water layer is mostly found in the upper firn column, radar TWT is converted to 149 

depth below the surface assuming a constant electromagnetic wave travel at 1.94x108 m s-1 into 150 

the firn. This travel velocity corresponds to a depth-averaged firn density of 650 kg m-3. We 151 

compare this method with the TWT-depth conversion described by (13) using the relationship 152 

between velocity in the firn and ACT11-A firn density profile24. The difference between the two 153 

methods does not exceed 50 cm for the first 20 m of the firn column, and with the lack of 154 

detailed density profiles (despite at our firn-core locations), we favored the first method in our 155 

analysis.  156 

The GPR did not have an integrated GPS, therefore a roving GPS unit was attached to the 157 

snowmobile towing the GPR sled and collected a point every five seconds.. GPS data processing 158 

was done using the on-line Canadian Spatial Reference Service - Precise Point Positioning. This 159 

processor uses GPS orbit and clock information to enhanced positioning precisions in the 160 

International Terrestrial Reference Frame via a kinematic processing mode. To geo-reference the 161 

final GPR radar data, the processed GPS data were used by matching the GPS time to the starting 162 

point of each GPR radar image in post processing to yield a 10 cm-scale topographic profile 163 

coincident with all GPR lines. A linear interpolation of the 5 s GPS points was made to obtain a 164 

GPS coordinates for each GPR trace. 165 
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The Accumulation Radar15 (AR) is a combined stepped-chirped system built by the Center 166 

for Remote Sensing of the Ice Sheets (CReSIS), operates from 550 to 900 MHz when flown on a 167 

P3 aircraft typically 500 m above surface with a vertical resolution in ice of 28 cm over an 168 

effective footprint of approximately 30 m (https://www.cresis.ku.edu/). All of the AR radar 169 

images (example: fig. S1) from the NASA Operation IceBridge (OIB) flightlines were manually 170 

inspected for presence of a water layer representing the top of the PFA. This was characterized 171 

by a strong subsurface horizon with no internal layers below. The top of the PFA along with the 172 

snow surface was screen-digitized on the corresponding radar images. The time difference 173 

between the surface and reflection horizon was converted to depth to the top of the PFA using 174 

the same wave velocity of 1.94x108 m s-1 as was used for the GPR depth calculations. A direct 175 

comparison between the depth to top of PFA derived from the GPR and AR is made for the 25 176 

km segment centered on the cores that drilled to water (ACT-11A and ACT-11A2, fig. S2). The 177 

depth to top of the PFA along the OIB flight lines is shown in fig. S3.  178 

While the spatial patterns between the PFA as mapped by the AR and simulated by 179 

RACMO2 are similar (Fig. 4), potential reasons for their differences (apart from the obvious 180 

uncertainty in the model results) are described here. The areas of RACMO2 simulated PFA that 181 

are not mapped as PFA in AR flight lines may be due to several reasons: 1) water is present but 182 

subsurface returns from the radar are not detectable because strong surface returns (clutter) from 183 

rough crevassed surfaces mask the weaker water layer return, 2) water is present but subsurface 184 

returns from the radar are not detectable due to subsurface clutter (refrozen ice bodies above the 185 

water layer), 3) liquid water is not present due to internal drainage through crevasses, a process 186 

not included in RACMO2. Locations where surface crevassing is observed coincident with 187 

simulated RACMO2 PFA that is not detected by AR are shown in Fig. S4. These three scenarios 188 
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could explain the lack of mapped water layer along flight lines with modeled water over the 189 

lower elevation portions of the numerous outlet glaciers along the south east coast. The contrary 190 

situation, with mapped PFA that is not simulated, is isolated to areas in south west and could be 191 

associated with model uncertainty and limited model resolution.  192 

  193 
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Fig. 1. Perennial Firn Aquifer locations on the Greenland ice sheet detected by radar and firn 274 

cores in April 2011.  NASA’s Operation IceBridge airborne Accumulation Radar flight lines are 275 

gray and locations of detected PFA are magenta dots. The red line represents the Arctic Circle 276 

Traverse 2011 with PFA firn-core locations and names (blue diamonds) and dry firn core 277 

locations red diamonds). The green line corresponds to the Arctic Circle Traverse 2010 that 278 

found no PFA evidences from firn cores (green diamonds). The ice sheet margin is blue and the 279 

black segment on ACT-11 line (inset) matches the GPR echogram (Fig. 2). 280 

 281 

Fig. 2. Profile of the top of the PFA from ground penetrating radar along ACT-11 traverse 282 

including PFA firn-core locations (ACT11-A and ACT11-A2).  a, Surface elevation profile from 283 

simultaneously acquired GPS and topographically corrected GPR PFA top horizon. This 284 

indicates the depth to top of the firn aquifer is influenced by the local topographic slope. b, GPR 285 

echogram with the top of the firn aquifer as the bright contiguous horizon cutting the numerous 286 

internal firn reflecting horizons. Location of the GPR profile is shown in Fig. 1. 287 

 288 

Fig. 3. Annual snow accumulation (1958-2008) from regional climate model with output 289 

calibrated by ice core values10 (color). Terrain elevation23 contours are white. NASA Operation 290 

IceBridge flight lines are gray. The ACT-11 traverse is red. Locations of radar-retrieved firn 291 

aquifer positions from the OIB Accumulation Radar are illustrated as black dots. 292 

 293 

Fig. 4. Modeled liquid water content (LWC) in the firn and detected PFA from airborne radar. 294 

The simulation of LWC is from RACMO2/GR for April 2011 (color). OIB flight lines (gray), 295 

ACT-11 traverse (red) and locations of PFA from OIB radar (black dots) are all data acquired in 296 
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April 2011. The LWC is integrated for the entire firn column from the surface down to 297 

approximately 20 m, varying with location (see methods for details).  298 
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