8 research outputs found

    Delineating the Genetic Component of Gene Expression in Major Depression

    Get PDF
    Background: Major depression (MD) is determined by a multitude of factors including genetic risk variants that regulate gene expression. We examined the genetic component of gene expression in MD by performing a transcriptome-wide association study (TWAS), inferring gene expression–trait relationships from genetic, transcriptomic, and phenotypic information. Methods: Genes differentially expressed in depression were identified with the TWAS FUSION method, based on summary statistics from the largest genome-wide association analysis of MD (n = 135,458 cases, n = 344,901 controls) and gene expression levels from 21 tissue datasets (brain; blood; thyroid, adrenal, and pituitary glands). Follow-up analyses were performed to extensively characterize the identified associations: colocalization, conditional, and fine-mapping analyses together with TWAS-based pathway investigations. Results: Transcriptome-wide significant differences between cases and controls were found at 94 genes, approximately half of which were novel. Of the 94 significant genes, 6 represented strong, colocalized, and potentially causal associations with depression. Such high-confidence associations include NEGR1, CTC-467M3.3, TMEM106B, LRFN5, ESR2, and PROX2. Lastly, TWAS-based enrichment analysis highlighted

    Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns

    Get PDF
    Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk

    Drug repositioning for treatment-resistant depression: Hypotheses from a pharmacogenomic study

    No full text
    About 20–30% of patients with major depressive disorder (MDD) develop treatment-resistant depression (TRD) and finding new effective treatments for TRD has been a challenge. This study aimed to identify new possible pharmacological options for TRD. Genes in pathways included in predictive models of TRD in a previous whole exome sequence study were compared with those coding for targets of drugs in any phase of development, nutraceuticals, proteins and peptides from Drug repurposing Hub, Drug-Gene Interaction database and DrugBank database. We tested if known gene targets were enriched in TRD-associated genes by a hypergeometric test. Compounds enriched in TRD-associated genes after false-discovery rate (FDR) correction were annotated and compared with those showing enrichment in genes associated with MDD in the last Psychiatric Genomics Consortium genome-wide association study. Among a total of 15,475 compounds, 542 were enriched in TRD-associated genes (FDR p < .05). Significant results included drugs which are currently used in TRD (e.g. lithium and ketamine), confirming the rationale of this approach. Interesting molecules included modulators of inflammation, renin-angiotensin system, proliferator-activated receptor agonists, glycogen synthase kinase 3 beta inhibitors and the rho associated kinase inhibitor fasudil. Nutraceuticals, mostly antioxidant polyphenols, were also identified. Drugs showing enrichment for TRD-associated genes had a higher probability of enrichment for MDD-associated genes compared to those having no TRD-genes enrichment (p = 6.21e-55). This study suggested new potential treatments for TRD using a in silico approach. These analyses are exploratory only but can contribute to the identification of drugs to study in future clinical trials.SCOPUS: ar.jDecretOANoAutActifinfo:eu-repo/semantics/publishe

    Genome-wide association study of treatment-resistance in depression and meta-analysis of three independent samples

    No full text
    Background Treatment-resistant depression (TRD) is the most problematic outcome of depression in terms of functional impairment, suicidal thoughts and decline in physical health.Aims To investigate the genetic predictors of TRD using a genome-wide approach to contribute to the development of precision medicine.Method A sample recruited by the European Group for the Study of Resistant Depression (GSRD) including 1148 patients with major depressive disorder (MDD) was characterised for the occurrence of TRD (lack of response to at least two adequate antidepressant treatments) and genotyped using the Infinium PsychArray. Three clinically relevant patient groups were considered: TRD, responders and non-responders to the first antidepressant trial, thus outcomes were based on comparisons of these groups. Genetic analyses were performed at the variant, gene and gene-set (i.e. functionally related genes) level. Additive regression models of the outcomes and relevant covariates were used in the GSRD participants and in a fixed-effect meta-analysis performed between GSRD, STAR∗D (n = 1316) and GENDEP (n = 761) participants.Results No individual polymorphism or gene was associated with TRD, although some suggestive signals showed enrichment in cytoskeleton regulation, transcription modulation and calcium signalling. Two gene sets (GO:0043949 and GO:0000183) were associated with TRD versus response and TRD versus response and non-response to the first treatment in the GSRD participants and in the meta-analysis, respectively (corrected P = 0.030 and P = 0.027).Conclusions The identified gene sets are involved in cyclic adenosine monophosphate mediated signal and chromatin silencing, two processes previously implicated in antidepressant action. They represent possible biomarkers to implement personalised antidepressant treatments and targets for new antidepressants.Declaration of interest D.S. has received grant/research support from GlaxoSmithKline and Lundbeck; has served as a consultant or on advisory boards for AstraZeneca, Bristol-Myers Squibb, Eli Lilly, Janssen and Lundbeck. S.M. has been a consultant or served on advisory boards for: AstraZeneca, Bristol-Myers Squibb, Forest, Johnson & Johnson, Leo, Lundbeck, Medelink, Neurim, Pierre Fabre, Richter. S.K. has received grant/research support from Eli Lilly, Lundbeck, Bristol-Myers Squibb, GlaxoSmithKline, Organon, Sepracor and Servier; has served as a consultant or on advisory boards for AstraZeneca, Bristol-Myers Squibb, GlaxoSmithKline, Eli Lilly, Lundbeck, Pfizer, Organon, Schwabe, Sepracor, Servier, Janssen and Novartis; and has served on speakers' bureaus for AstraZeneca, Eli Lily, Lundbeck, Schwabe, Sepracor, Servier, Pierre Fabre, Janssen and Neuraxpharm. J.Z. has received grant/research support from Lundbeck, Servier, Brainsway and Pfizer, has served as a consultant or on advisory boards for Servier, Pfizer, Abbott, Lilly, Actelion, AstraZeneca and Roche and has served on speakers' bureaus for Lundbeck, Roch, Lilly, Servier, Pfizer and Abbott. J.M. is a member of the Board of the Lundbeck International Neuroscience Foundation and of Advisory Board of Servier. A.S. is or has been consultant/speaker for: Abbott, AbbVie, Angelini, Astra Zeneca, Clinical Data, Boehringer, Bristol Myers Squibb, Eli Lilly, GlaxoSmithKline, Innovapharma, Italfarmaco, Janssen, Lundbeck, Naurex, Pfizer, Polifarma, Sanofi and Servier. C.M.L. receives research support from RGA UK Services Limited.SCOPUS: ar.jDecretOANoAutActifinfo:eu-repo/semantics/publishe

    Genome-wide association study of increasing suicidal ideation during antidepressant treatment in the GENDEP project

    No full text
    Suicidal thoughts during antidepressant treatment have been the focus of several candidate gene association studies. The aim of the present genome-wide association study was to identify additional genetic variants involved in increasing suicidal ideation during escitalopram and nortriptyline treatment. A total of 706 adult participants of European ancestry, treated for major depression with escitalopram or nortriptyline over 12 weeks in the Genome-Based Therapeutic Drugs for Depression (GENDEP) study were genotyped with Illumina Human 610-Quad Beadchips (Illumina, San Diego, CA, USA). A total of 244 subjects experienced an increase in suicidal ideation during follow-up. The genetic marker most significantly associated with increasing suicidality (8.28 × 10 7) was a single-nucleotide polymorphism (SNP; rs11143230) located 30 kb downstream of a gene encoding guanine deaminase (GDA) on chromosome 9q21.13. Two suggestive drug-specific associations within KCNIP4 (Kv channel-interacting protein 4; chromosome 4p15.31) and near ELP3 (elongation protein 3 homolog; chromosome 8p21.1) were found in subjects treated with escitalopram. Suggestive drug by gene interactions for two SNPs near structural variants on chromosome 4q12, one SNP in the apolipoprotein O (APOO) gene on chromosome Xp22.11 and one on chromosome 11q24.3 were found. The most significant association within a set of 33 candidate genes was in the neurotrophic tyrosine kinase receptor type 2 (NTRK2) gene. Finally, we also found trend for an association within genes previously associated with psychiatric phenotypes indirectly linked to suicidal behavior, that is, GRIP1, NXPH1 and ANK3. The results suggest novel pathways involved in increasing suicidal ideation during antidepressant treatment and should help to target treatment to reduce the risk of this dramatic adverse event. Limited power precludes definitive conclusions and replication in larger sample is warranted. © 2012 Macmillan Publishers Limited. All rights reserved.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    New insights into the pharmacogenomics of antidepressant response from the GENDEP and STAR∗D studies: Rare variant analysis and high-density imputation

    No full text
    Genome-wide association studies have generally failed to identify polymorphisms associated with antidepressant response. Possible reasons include limited coverage of genetic variants that this study tried to address by exome genotyping and dense imputation. A meta-analysis of Genome-Based Therapeutic Drugs for Depression (GENDEP) and Sequenced Treatment Alternatives to Relieve Depression (STARD) studies was performed at the single-nucleotide polymorphism (SNP), gene and pathway levels. Coverage of genetic variants was increased compared with previous studies by adding exome genotypes to previously available genome-wide data and using the Haplotype Reference Consortium panel for imputation. Standard quality control was applied. Phenotypes were symptom improvement and remission after 12 weeks of antidepressant treatment. Significant findings were investigated in NEWMEDS consortium samples and Pharmacogenomic Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS) for replication. A total of 7062 950 SNPs were analyzed in GENDEP (n = 738) and STARD (n = 1409). rs116692768 (P = 1.80e ?08, ITGA9 (integrin ?9)) and rs76191705 (P = 2.59e ?08, NRXN3 (neurexin 3)) were significantly associated with symptom improvement during citalopram/escitalopram treatment. At the gene level, no consistent effect was found. At the pathway level, the Gene Ontology (GO) terms GO: 0005694 (chromosome) and GO: 0044427 (chromosomal part) were associated with improvement (corrected P = 0.007 and 0.045, respectively). The association between rs116692768 and symptom improvement was replicated in PGRN-AMPS (P = 0.047), whereas rs76191705 was not. The two SNPs did not replicate in NEWMEDS. ITGA9 codes for a membrane receptor for neurotrophins and NRXN3 is a transmembrane neuronal adhesion receptor involved in synaptic differentiation. Despite their meaningful biological rationale for being involved in antidepressant effect, replication was partial. Further studies may help in clarifying their role.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes.

    Get PDF
    Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans

    Evidence for three genetic loci involved in both anorexia nervosa risk and variation of body mass index

    No full text
    The maintenance of normal body weight is disrupted in patients with anorexia nervosa (AN) for prolonged periods of time. Prior to the onset of AN, premorbid body mass index (BMI) spans the entire range from underweight to obese. After recovery, patients have reduced rates of overweight and obesity. As such, loci involved in body weight regulation may also be relevant for AN and vice versa. Our primary analysis comprised a cross-trait analysis of the 1000 single-nucleotide polymorphisms (SNPs) with the lowest P-values in a genome-wide association meta-analysis (GWAMA) of AN (GCAN) for evidence of association in the largest published GWAMA for BMI (GIANT). Subsequently we performed sex-stratified analyses for these 1000 SNPs. Functional ex vivo studies on four genes ensued. Lastly, a look-up of GWAMA-derived BMI-related loci was performed in the AN GWAMA. We detected significant associations (P-values <5 × 10-5, Bonferroni-corrected P<0.05) for nine SNP alleles at three independent loci. Interestingly, all AN susceptibility alleles were consistently associated with increased BMI. None of the genes (chr. 10: CTBP2, chr. 19: CCNE1, chr. 2: CARF and NBEAL1; the latter is a region with high linkage disequilibrium) nearest to these SNPs has previously been associated with AN or obesity. Sex-stratified analyses revealed that the strongest BMI signal originated predominantly from females (chr. 10 rs1561589; Poverall: 2.47 × 10-06/Pfemales: 3.45 × 10-07/Pmales: 0.043). Functional ex vivo studies in mice revealed reduced hypothalamic expression of Ctbp2 and Nbeal1 after fasting. Hypothalamic expression of Ctbp2 was increased in diet-induced obese (DIO) mice as compared with age-matched lean controls. We observed no evidence for associations for the look-up of BMI-related loci in the AN GWAMA. A cross-trait analysis of AN and BMI loci revealed variants at three chromosomal loci with potential joint impact. The chromosome 10 locus is particularly promising given that the association with obesity was primarily driven by females. In addition, the detected altered hypothalamic expression patterns of Ctbp2 and Nbeal1 as a result of fasting and DIO implicate these genes in weight regulation
    corecore