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ABSTRACT
BACKGROUND: Major depression (MD) is determined by a multitude of factors including genetic risk variants that
regulate gene expression. We examined the genetic component of gene expression in MD by performing a
transcriptome-wide association study (TWAS), inferring gene expression–trait relationships from genetic,
transcriptomic, and phenotypic information.
METHODS: Genes differentially expressed in depression were identified with the TWAS FUSION method, based on
summary statistics from the largest genome-wide association analysis of MD (n = 135,458 cases, n = 344,901
controls) and gene expression levels from 21 tissue datasets (brain; blood; thyroid, adrenal, and pituitary glands).
Follow-up analyses were performed to extensively characterize the identified associations: colocalization,
conditional, and fine-mapping analyses together with TWAS-based pathway investigations.
RESULTS: Transcriptome-wide significant differences between cases and controls were found at 94 genes,
approximately half of which were novel. Of the 94 significant genes, 6 represented strong, colocalized, and potentially
causal associations with depression. Such high-confidence associations include NEGR1, CTC-467M3.3,
TMEM106B, LRFN5, ESR2, and PROX2. Lastly, TWAS-based enrichment analysis highlighted dysregulation of
gene sets for, among others, neuronal and synaptic processes.
CONCLUSIONS: This study sheds further light on the genetic component of gene expression in depression by
characterizing the identified associations, unraveling novel risk genes, and determining which associations are
congruent with a causal model. These findings can be used as a resource for prioritizing and designing subsequent
functional studies of MD.

https://doi.org/10.1016/j.biopsych.2020.09.010
Major depression (MD) constitutes one of the largest contrib-
utors to global disability worldwide, affecting around 322
million people and accounting for approximately 50 million
years lived with disability (1). This disorder is of complex origin,
being determined by the interplay of a multitude of environ-
mental factors (e.g., life events) and genetic variations (2). The
genetic contribution to MD has been shown by twin studies,
which yielded heritability estimates of approximately 37% (3),
and genome-wide association studies (GWASs), which esti-
mated a 9% heritability as captured by common single
nucleotide polymorphisms (SNPs) (4).

GWASs have started to identify the specific genes under-
lying depression genetic risk. In one of the most recent and
largest GWASs to date (n = 135,458 cases, n = 344,901 con-
trols), Wray et al. (5) uncovered 44 independent loci associated
with MD. Drawing on a larger sample (n = 246,363 cases, n =
561,190 controls) and a broader phenotype definition, Howard
et al. (4) observed 102 independent loci, further demonstrating
the polygenicity of the disorder. While GWASs have enabled
the identification of SNPs conferring susceptibility to
depression, the functional significance of such genetic
variants remains to be elucidated. The examination of
intermediary processes between genomics and the
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phenotype, such as gene expression, would permit greater
insight into the molecular mechanisms underlying depression.

Gene expression is a biological process permitting the
translation of the genetic code into functional products, such
as proteins and functional RNA. While gene expression is
affected by extrinsic exposures, a substantial role for SNPs on
the transcriptome has also been observed, with 50% of
common variants being associated with gene expression, in
any tissue (6). Genetic variants affecting gene expression are
referred to as expression quantitative trait loci (eQTL).

Studies mapping eQTLs enabled the development of publicly
available reference panels containing information on SNP-
transcription relationships, in multiple tissues, across different
samples. Based on these, gene expression can be predicted in
any genetically mapped trait. The use of predicted gene
expression allows for the analysis of transcription-trait associa-
tions with larger samples, inexpensively, and in multiple tissues,
as opposed to classical observed gene expression studies.
Importantly, such a novel approach solely captures the genetic
component of gene expression, i.e., gene expression resulting
from SNP variation (usually in cis, within 500 kb from gene
boundaries). Differential expression that is a consequence of
depression (reverse causation) can, therefore, be excluded.
f Biological Psychiatry. This is an open access article under the
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Several methods to predict transcription-trait associations
are available. These leverage 3 key sources of information: 1)
reference panels with data on SNPs-transcription associations
(e.g., GTEx [Genotype-Tissue Expression] Consortium), 2) in-
dividual- or summary statistic–level GWAS data capturing
SNP-trait associations, and 3) a linkage disequilibrium (LD)
(i.e., correlations across SNPs) reference. Of the available
methods, transcriptome-wide association studies (TWASs)
(7,8) are the most commonly used. These explore the
transcription-trait association with a gene-by-gene approach.
The integration of SNP effects into genes lowers the multiple
testing burden and increases power, thus allowing TWASs
to identify genetic associations potentially overlooked by
GWASs (8).

To date, 4 studies have tested for an association between
the genetic component of gene expression and depression
(5,9–11). Wray et al. (5) showed transcriptomic differences in
MD at 17 genes in the dorsolateral prefrontal cortex (DLPFC).
Other studies extended these findings by identifying a greater
number of associations, for MD (9,10) as well as broad
depression (11), across multiple tissues (i.e., distinct brain
tissues and whole blood).

Yet, no TWAS to date has extensively examined these as-
sociations. This impeded the identification of which tran-
scriptomic changes are most relevant to depression. As genes
correlate in their expression and LD can determine the
detection of noncausal genes in TWASs (12), it is important to
better delineate the genetic component of gene expression.
Moreover, previous studies generally examined brain and
blood tissues only, thus overlooking the role of the
hypothalamic-pituitary-adrenal (HPA) and hypothalamic-
pituitary-thyroid (HPT) axes. These are important in MD
owing to their involvement in the hypo- and hyperactivity of
stress responses, sleeping difficulties, and weight loss—all
physiological dysfunctions shown in patients with depression
(13–15).

In the present study, we aimed to delineate key tran-
scriptomic changes within brain, blood, and HPA/HPT axes
tissues in depression by exploring the origin of identified
transcriptomic associations, in terms of which genes are likely
causal and which genes determine both transcriptomic and
phenotypic changes (i.e., pleiotropy). Moreover, we examine
how such genes lead the dysregulation of nearby coexpressed
genes and of biological pathways. This study will add to the
field by aiding the understanding of the biological mechanisms
of depression, incorporating several disorder-relevant tissues,
and highlighting key genes for the disorder that might be useful
candidates for future research on its etiology and treatment.

METHODS AND MATERIALS

Datasets

The analyses used 1) genome-wide summary statistics from
the GWAS of MD by Wray et al. (5), 2) 21 SNP weight sets from
5 separate transcriptomic reference samples, and 3) the 1000
Genomes Project reference for LD estimation.

First, we leveraged summary statistics from the Psychiatric
Genomics Consortium (PGC) MD GWAS (5), which includes
information on the genetic susceptibility to MD for 1,185,038
HapMap3 SNPs from 7 samples: the PGC studies, deCODE,
2 Biological Psychiatry - -, 2020; -:-–- www.sobp.org/journal
Generation Scotland, GERA (Genetic Epidemiology Research
on Adult Health and Aging), iPSYCH, UK Biobank, and
23andMe (not publicly accessible). Participants (n = 135,458
cases, n = 344,901 controls) were of European genetic
ancestry.

Second, SNP weights from distinct tissues and samples (of
European genetic ancestry) were used. SNP weights represent
the correlations of SNPs with the expression of their annotated
gene (8). SNP weights from postmortem brain tissue; whole
blood; peripheral blood; and adrenal, pituitary, and thyroid
glands were downloaded via the TWAS FUSION website
(http://gusevlab.org/projects/fusion/#reference-functional-data)
after selection based on previous literature (Supplement 1). The
weights pertained to the following 5 RNA reference samples:
NTR (Netherlands Twin Register) and YFS (Young Finns Study),
both of which provide information on blood tissue gene
expression; CMC (CommonMind Consortium) and Psy-
chENCODE Consortium, both of which assessed the DLPFC;
and the GTEx Consortium, a state-of-the-art study in which
expression in multiple brain and peripheral tissues was
measured (8,16–18), although in a limited number of individuals
(determining fewer heritable genes). The SNP weights obtained
from a given sample and tissue (e.g., GTEx thyroid, NTR pe-
ripheral blood) are called SNP weight sets. Each gene within a
given SNP weight set is a feature, i.e., a gene that was exam-
ined within a given tissue and sample (e.g., NEGR1 GTEx thy-
roid). SNP weight set characteristics are presented in Table S1
in Supplement 2.

Third, the 1000 Genomes Phase 3 European LD reference
(N = 489) (19) was downloaded from the FUSION website
(http://gusevlab.org/projects/fusion/).

Statistical Analyses

All statistical analyses were performed in Bash (GNU Project
Bourne Again SHell) or R, version 3.5.0 (The R Project for
Statistical Computing, Vienna, Austria). Codes and outputs are
publicly available at https://opain.github.io/MDD-TWAS.

Transcriptome-wide Significance Threshold. To
compute the transcriptome-wide significance threshold for this
study, we leveraged a permutation procedure used in a pre-
vious TWAS (Supplement 1) (19). This approach estimates a
significance threshold adjusted for the number of tested fea-
tures, accounting for the correlation between features within
and across SNP weight sets. The threshold for transcriptome-
wide significance was p = 1.37 3 1026 (for a false-positive rate
of a = .05), with a more stringent significance threshold of p =
3.69 3 1028, for a = .001.

TWAS FUSION and Colocalization. A TWAS FUSION
analysis was run on autosomal chromosomes, following the
TWAS FUSION protocol with default settings (Supplement 1)
(http://gusevlab.org/projects/fusion/). Colocalization was
assessed using the coloc R package for all genes meeting
transcriptome-wide significance and within a 1.5-Mb window.
This Bayesian approach estimates the posterior probability
(PP) that associations within a locus for two outcomes are
driven by a shared causal variant. It thus enables the distinc-
tion between associations driven by horizontal pleiotropy (1
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causal SNP affecting both transcription and MD; posterior
probability PP4) and linkage (2 causal SNPs in LD affecting
transcription and MD separately; posterior probability PP3).
More details are available in Supplement 1.

Conditional Analysis. A conditional analysis was used to
determine whether multiple significant features within a given
locus represent independent associations or a single associ-
ation owing to correlated predicted expression between fea-
tures. This was performed using the FUSION software, which
jointly estimates the effect of all significant features within each
locus by using residual SNP associations with depression after
accounting for the predicted expression of other features. This
process identifies which features represent independent as-
sociations (termed jointly significant) and which features are
not significant when accounting for the predicted expression of
other features in the region (termed marginally significant)
(Supplement 1) (8). We additionally calculated to what extent
the GWAS associations within each locus could be explained
by functional associations detected in this TWAS (i.e., the
variance explained) (Supplement 1).

TWAS Fine Mapping. FOCUS, a TWAS association fine
mapping method, was used to identify which features are likely
to be causal within regions of association (12). Analogous to
statistical fine mapping of GWAS results, FOCUS estimates
the posterior inclusion probability (PIP) of each feature being
causal within a region of association, using the sum of PPs to
define the default 90% credible set, a set of features likely to
contain the causal feature. The method includes a null model
where the causal feature is not present. The PIP of individual
features is also of interest, with values . .5 indicating that a
feature is more likely to be causal than any other feature in the
region. The FOCUS fine mapping function was applied across
all SNP weight panels simultaneously without the tissue pri-
oritization option.

TWAS-Based Gene Set Enrichment Analysis. Finally,
we used a previously applied approach for TWAS-based gene
set enrichment analysis (TWAS-GSEA) (19) to identify func-
tionally informed dysregulated pathways characterizing MD
(Supplement 1). A linear mixed model was used to test for an
association between z scores indicating nonzero association
for each feature and gene set membership, while adjusting for
gene length and numbers of SNPs within the gene region and
accounting for correlation between features. Linear mixed
models were fitted using the R package lme4qtl (20). For the
TWAS-GSEA, we used 7246 hypothesis-free gene sets from
MSigDB v6.1 (https://www.gsea-msigdb.org/gsea/msigdb/
index.jsp) and 76 candidate gene sets from the GWAS by
Wray et al. (5). A minimum of 5 genes within the gene set was
required to perform the analysis. TWAS-GSEA was run using
different sets of TWAS results to identify gene sets enriched
across all tissues, within tissue group (brain, blood, HPA/HPT
axes), and within each SNP weight set. If multiple features for a
single gene were present, the feature explaining the largest
amount of variance in the expression of the gene was retained.
Multiple testing correction was applied (false discovery rate q =
.05). Moreover, by using BRAINSPAN data, we investigated
B

the preferential expression of genes at multiple developmental
stages (19 stages) (21). This was also done within the mixed
model method for TWAS-GSEA, in line with previous literature
(19). A Bonferroni significance threshold was used (p , .002).

Comparisons With Previous Literature. Lastly, we
compared our findings with previous literature of observed and
predicted gene expression. The comparison was performed to
evaluate how the findings from the largest study of observed
expression in depression to date (N = 1848) (22) compared
with ours. This assessed whole-blood gene expression using
microarray technology in the Netherlands Study of Depression
and Anxiety. Genes were considered as confirmed if their p
value surpassed a Bonferroni-corrected significance threshold
accounting for the number of genes compared across studies
(p , .05/number of unique genes of nominal significance) in
our study. A consistent direction of effect was not a require-
ment for confirmation of findings. We additionally contrasted
our results to 3 previous studies (5,9,10) of predicted gene
expression in MD to evaluate the novel contribution of this
study. Overall, we considered 136 unique genes, significant in
any SNP weight set, in either of the TWASs.

RESULTS

TWAS Analysis

We identified 176 significant features, from 94 unique genes,
which were differentially expressed (p , 1.37 3 1026) across
multiple SNP weight sets (i.e., tissues measured within a
sample) in MD (Figure 1; Figure S1A, B in Supplement 1;
Table S2 in Supplement 2). Of the 176 significant features, 94
were upregulated, while 82 were downregulated. The most
significant feature was NEGR1 (GTEx whole blood) (z = 8.76,
p = 1.94 3 10218). Compared with the GWAS by Wray et al. (5),
48 unique genes were novel (based on .500 kb distance and
R2 , .1) (Table S2 in Supplement 2).

The largest number of associations were from the Psy-
chENCODE DLPFC set (22 associated features), but in-
ferences on tissue enrichment are difficult, as SNP weight
sets differ in their characteristics (e.g., sample size). Asso-
ciations are nevertheless shown by tissue group (brain,
blood, HPA/HPT axes) in Figure S2A–D in Supplement 1. Of
note, 55 associations (from 26 unique genes) were within the
extended major histocompatibility complex region (chro-
mosome 6: 26–34 Mb). This region is gene rich and char-
acterized by extensive LD, so these associations should be
interpreted with caution. Information on the results once the
major histocompatibility complex region is excluded is pre-
sented in Supplement 1.

Colocalization

We evaluated the colocalization status of a gene by calculating
the PP that the genetic and functional associations derived
from distinct causal SNPs (PP3) and a shared causal SNP
(PP4) (23). Of the 176 significant features, 97 (53 unique genes)
were considered as colocalized based on their high PP4 (. .8),
in line with previous literature (24,25) (Table S3 in Supplement
2). This means that the same genetic variants were driving
associations with depression and with these 97 features,
iological Psychiatry - -, 2020; -:-–- www.sobp.org/journal 3
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Figure 1. The relationship between gene expression and major depression. Manhattan-style plot of z scores for each of the tested genes, across all au-
tosomes and tested single nucleotide polymorphism weight sets. Blue lines indicate the transcriptome-wide significance threshold. The names of statistically
significant genes are shown.
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potentially suggesting transcriptomic mediation of genetic risk
for depression.

Conditional Analysis

We observed that multiple significant features resided within
the same locus (defined as a 1.5 Mb 6 0.5 window), for a total
of 36 genomic regions (Table 1; Table S4 in Supplement 2).
Conditional analysis of the 176 significant features identified 50
jointly (49 unique genes) and 126 marginally (45 unique genes)
significant features. This indicated that most of the identified
features were associated with depression owing to their
coexpression with the 50 independent features. Importantly,
anomalous results were shown at 3 loci (including major his-
tocompatibility complex loci), likely reflecting technical prob-
lems owing to the mismatch between the LD references used
in the different samples (GWAS and functional data) (Table S4
in Supplement 2).

We additionally investigated the effect of adjusting for fea-
tures’ gene expression on associations between SNPs and the
trait (i.e., GWAS findings). The variance in the GWAS associ-
ations accounted for by gene expression associations at a
given locus ranged from 0.41% to 100%, with a median
4 Biological Psychiatry - -, 2020; -:-–- www.sobp.org/journal
variance explained of 84%. Genome-wide associations at 3
loci, including TMEM106B (PsychENCODE DLPFC), were fully
explained by our TWAS results (Table 1). This might mean that
at these loci, genetic risk for depression is mediated by func-
tional changes.

Statistical Fine Mapping

FOCUS was performed to calculate the probability estimates
of causality (PIP) for each feature. We found 23 features (23
unique genes) with PIP . .5, indicating these are likely causal
in their associations with depression (Table 2; Table S5 in
Supplement 2). Of these, 11 were supported by the colocali-
zation analysis (Table 2). The highest probability of causality
was within NEGR1 GTEx whole blood (PIP = 1.00).

High-Confidence Associations

In a data-driven approach, we highlighted the genes that are
most relevant to MD (high-confidence associations). First, in
the TWAS results, we applied a more stringent significance
threshold of p , 3.69 3 1028 (a = .001) to minimize the chance
of false-positive results (26). Second, from these highly sig-
nificant genes, we identified the genes that were colocalized

http://www.sobp.org/journal


Table 1. Conditional Analysis Findings: Jointly and Marginally Significant Features per Locus

Location Jointly Significant Features (SNP Weight Set)

No. of Marginally
Significant
Features Top TWAS p Top GWAS p

Variance
Explained, %a

chr1:7413452-9875347 RERE (YFS blood) 3 1.10 3 1027 3.18 3 1028 100.00

chr1:35885799-37876701 SNORA63 (GTEx nucleus accumbens) 0 1.24 3 1026 6.27 3 1028 69.30

chr1:71753372-73766162 NEGR1 (GTEx whole blood) 5 1.94 3 10218 4.54 3 10215 97.80

chr1:174891875-177103690 RFWD2 (CMC DLPFC splicing) 3 4.66 3 1027 2.30 3 1027 90.00

chr1:180725304-182724241 CACNA1E (CMC DLPFC splicing) 0 6.06 3 1027 1.08 3 1027 64.00

chr1:196478918-198741422 DENND1B (CMC DLPFC splicing) 2 5.90 3 1028 3.11 3 1028 92.60

chr2:57388379-59467945 FANCL (CMC DLPFC splicing, CMC DLPFC) 0 2.18 3 1027 4.68 3 1029 85.00

chr2:196832647-199295649 ANKRD44 (YFS blood) 1 1.27 3 1028 3.52 3 1027 82.80

chr3:43487406-45561063 ZNF445 (CMC DLPFC) 0 3.34 3 1027 6.34 3 1028 74.70

chr4:40937584-43090938 SLC30A9 (GTEx cortex), TMEM33
(PsychENCODE DLPFC)

8 7.72 3 1029 3.59 3 1029 92.30

chr5:139030460-141219083 PCDHA5 (GTEx thyroid) 2 6.55 3 1028 1.37 3 1026 87.70

chr6:98832858-100829135 COQ3 (CMC DLPFC splicing) 0 2.65 3 1028 9.09 3 1028 35.10

chr6:104405706-106583999 BVES-AS1 (GTEx amygdala) 2 2.43 3 1028 9.50 3 1028 92.90

chr7:11252396-13282905 TMEM106B (PsychENCODE DLPFC) 3 7.01 3 1029 2.55 3 1028 100.00

chr7:24021857-26019767 OSBPL3 (GTEx pituitary) 0 1.88 3 1028 6.49 3 1027 77.70

chr8:51238261-53720740 PXDNL (CMC DLPFC) 0 3.92 3 1029 1.34 3 1027 83.80

chr8:60435234-62428932 RP11-163N6.2 (GTEx thyroid) 0 9.47 3 1028 5.25 3 1027 89.80

chr9:125606617-127604411 PIGFP2 (PsychENCODE DLPFC) 0 1.12 3 1027 2.73 3 1028 63.80

chr11:56092913-58422547 TNKS1BP1 (GTEx adrenal gland), CLP1
(GTEx whole blood)

1 2.04 3 1027 1.47 3 1027 95.20

chr11:60540194-62557903 TMEM258 (PsychENCODE DLPFC) 0 5.12 3 1027 4.26 3 1027 83.90

chr11:112346414-114345882 DRD2 (GTEx frontal cortex) 0 3.90 3 1027 4.90 3 1027 0.41

chr13:52652520-54625616 OLFM4 (CMC DLPFC) 0 3.56 3 1027 6.06 3 10219 29.90

chr14:41077086-43073683 CTD-2298J14.2 (GTEx thyroid) 2 1.36 3 1028 2.57 3 1029 88.10

chr14:58952573-61334943 CCDC175 (GTEx thyroid) 3 4.28 3 1028 2.18 3 1027 82.30

chr14:63322572-65770213 ESR2 (GTEx pituitary) 2 2.20 3 1029 7.60 3 10210 80.00

chr14:74120633-76388050 PROX2 (GTEx thyroid) 5 8.51 3 1029 6.71 3 1029 93.50

chr14:102878783-105180229 RP11-894P9.2 (GTEx thyroid) 11 4.69 3 1028 3.05 3 1029 84.60

chr16:71147494-73210261 PMFBP1 (PsychENCODE DLPFC) 0 2.46 3 1027 3.35 3 1028 76.30

chr17:26406423-28478661 TIAF1 (GTEx adrenal gland) 1 8.27 3 1028 8.51 3 1029 58.50

chr17:64524284-66521332 CTD-2653B5.1 (PsychENCODE DLPFC) 0 3.30 3 1027 5.39 3 1026 25.80

chr18:51385406-53561919 RAB27B (PsychENCODE DLPFC) 1 5.36 3 1027 3.62 3 10211 14.60

chr20:46838019-48853908 DDX27 (CMC DLPFC) 0 1.32 3 1026 3.54 3 1026 91.00

chr22:40218102-42697216 ZC3H7B (GTEx cerebellum) 8 1.01 3 1028 7.56 3 1029 95.50

Chr, chromosome; CMC, CommonMind Consortium; DLPFC, dorsolateral prefrontal cortex; GTEx, Genotype-Tissue Expression; GWAS,
genome-wide association study; NTR, Netherlands Twin Register; SNP, single nucleotide polymorphism; TWAS, transcriptome-wide association
study; YFS, Young Finns Study.

aVariance in the top GWAS SNP explained by the top TWAS feature within the locus.
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(PP4 . .8) and likely to be causal (PIP . .5). These features
were therefore strongly associated with MD, possibly at a
causal level, and their transcription changes resulted from the
corresponding genetic risk for depression. This strategy
showed 6 high-confidence associations (Table 3), from brain
tissues (frontal cortex, cerebellum) and peripheral tissues
(whole blood, thyroid, pituitary). The NEGR1 gene (GTEx whole
blood) constituted the most significant hit (p = 1.94 3 10218)
with the highest probability of causality (PIP = 1.00).

TWAS-Based Gene Set Enrichment Analysis

Candidate gene analysis highlighted enrichment for 15 gene
sets, including neuronal and synaptic processes,
B

schizophrenia genetic risk, and RBFOX2, a key regulator of
splicing within the nervous system and of estrogen receptor
transcriptional activity (Table 4) (27). The hypothesis-free
analysis revealed enrichment for 7 gene sets, including
macromolecular and protein complex binding (Table 5).
Enrichment or depletion of our differentially expressed genes
was not found at any developmental stage (Figure S3A–C in
Supplement 1).

Comparison With Previous Literature

First, our findings were compared with the largest study of
observed gene expression to date for MD (22). Of the signifi-
cant genes (false discovery rate , 0.1) of such study, we also
iological Psychiatry - -, 2020; -:-–- www.sobp.org/journal 5
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Table 2. Statistical Fine Mapping Findings: Potentially Causal Features

Location Gene SNP Weight Set FOCUS PIPa Colocalization

chr1:8412457-8877702 RERE YFS blood .50 True

chr1:36884051-36884179 SNORA63 GTEx nucleus accumbens .70 False

chr1:71861623-72748417 NEGR1 GTEx whole blood 1.00 True

chr1:181452685-181775921 CACNA1E CMC DLPFC splicing .52 False

chr1:197473878-197744623 DENND1B CMC DLPFC .73 True

chr2:58386377-58468515 FANCL CMC DLPFC splicing .80 True

chr4:41992489-42092474 SLC30A9 GTEx cortex .53 False

chr5:87988462-87989789 CTC-467M3.3 GTEx frontal cortex .84 True

chr6:99817347-99842082 COQ3 CMC DLPFC splicing .97 False

chr6:105584224-105617820 BVES-AS1 GTEx amygdala .74 False

chr7:12250867-12282993 TMEM106B GTEx whole blood .61 True

chr7:24836158-25021253 OSBPL3 GTEx pituitary .98 False

chr8:52232136-52722005 PXDNL CMC DLPFC 1.00 False

chr8:61297147-61429354 RP11-163N6.2 GTEx thyroid .92 False

chr9:126605315-126605965 PIGFP2 PsychENCODE DLPFC .94 False

chr11:113280318-113346111 DRD2 GTEx frontal cortex .97 False

chr13:53602875-53626196 OLFM4 CMC DLPFC .99 False

chr14:42076773-42373752 LRFN5 GTEx cerebellum .50 True

chr14:59971779-60043549 CCDC175 GTEx thyroid .61 True

chr14:64550950-64770377 ESR2 GTEx pituitary .59 True

chr14:75319736-75330537 PROX2 GTEx thyroid .72 True

chr16:72146056-72210777 PMFBP1 PsychENCODE DLPFC .96 False

chr17:27401933-27405875 TIAF1 GTEx adrenal gland .75 True

Chr, chromosome; CMC, CommonMind Consortium; DLPFC, dorsolateral prefrontal cortex; GTEx, Genotype-Tissue Expression; PIP, posterior
inclusion probability; SNP, single nucleotide polymorphism; YFS, Young Finns Study.

aPIP estimate of causality.
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identified 6 unique genes (PAPPA2, MBNL1, TMEM64,
GNPTAB, KTN1, TMED10). Four of these (PAPPA2, GNPTAB,
KTN1, TMED10) were consistently upregulated or down-
regulated (Table S6 in Supplement 1; Supplement 1).

To evaluate the novelty of our findings, we compared our
results with previous studies of predicted gene expression
changes in MD performed by Wray et al. (5) (TWAS FUSION
method), Gaspar et al. (9) (S-PrediXcan), and Gerring et al. (10)
(S-PrediXcan). Our results were overlapping with previous
TWASs at 83 genes (Table S7 in Supplement 2). Moreover,
across all TWASs performed to date, we identified 53 novel
associations (unique genes). This might be due to differences
Table 3. Characteristics of High-Confidence Associations: High

Location Gene SNP Weight Set TWAS z

chr1:71861623-72748417 NEGR1 GTEx whole blood 8.76

chr5:87988462-87989789 CTC-467M3.3 GTEx frontal cortex 27.09

chr7:12250867-12282993 TMEM106B GTEx whole blood 5.53

chr14:42076773-42373752 LRFN5 GTEx cerebellum 5.60

chr14:64550950-64770377 ESR2 GTEx pituitary 25.98

chr14:75319736-75330537 PROX2 GTEx thyroid 25.76

Chr, chromosome; GTEx, Genotype-tissue expression; GWAS, genome-w
probability; SNP, single nucleotide polymorphism; TWAS, transcriptome-wi

aGenes are novel compared with GWAS if .500 kb away from a lead GW
variant (R2 , .1). Genes are novel compared with previous TWASs of majo

bPP of colocalization.
cPIP estimate of causality.
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in the type and number of SNP weight sets used, methods,
and statistical thresholds (e.g., permutation-based vs.
Bonferroni).
DISCUSSION

This is the first study to uncover the genetic component of
gene expression in MD through a comprehensive investigation
in multiple tissues and an in-depth characterization of the
identified associations delineating key transcriptomic changes.
Here, we highlight a few key findings. First, we detected 94
unique genes associated with depression, approximately half
ly Significant, Colocalized, and Potentially Causal Features

TWAS p Novela Colocalization PP4b FOCUS PIPc

1.94 3 10218 No .99 1.00

1.33 3 10212 No .85 .84

3.18 3 1028 Yes (GWAS) .99 .61

2.17 3 1028 No .96 .50

2.20 3 1029 No .86 .59

8.51 3 1029 Yes (TWAS) .96 .72

ide association study; PIP, posterior inclusion probability; PP, posterior
de association study.
AS variant and if their predicted expression is not correlated with GWAS
r depression if these did not identify them as statistically significant.
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Table 4. Candidate Gene Set Enrichment Results Based on TWAS Results From All Tissues, Tissue Sets, and Each Panel

Gene Set PubMed ID Estimate SE t p FDR pa Tissue

All Tissue Results

RBFOX2 24613350 0.08 0.02 3.26 5.57 3 1024 3.95 3 1022 All

Tissue-Set Results

RBFOX2 24613350 0.11 0.03 4.13 1.78 3 1025 1.26 3 1023 Brain

SCZ.COMPOSITE 24463508 0.11 0.03 3.64 1.39 3 1024 4.92 3 1023 Brain

RBFOX1.RBFOX3 24613350 0.08 0.02 3.45 2.80 3 1024 6.62 3 1023 Brain

FMRP 21784246 0.12 0.04 3.35 3.98 3 1024 7.06 3 1023 Brain

POTENTIALLY.SYNAPTIC.ALL 27694994 0.06 0.02 3.03 1.21 3 1023 1.72 3 1022 Brain

PGC.BP.P10.4 21926972 0.18 0.06 2.85 2.20 3 1023 2.60 3 1022 Brain

NEURONAL.PSD 23071613 0.09 0.03 2.67 3.83 3 1023 3.89 3 1022 Brain

Tissue-Specific Results

MIR.137 24463508 0.36 0.10 3.58 1.70 3 1024 1.02 3 1022 CMC DLPFC RNA-seq

SCZ.DENOVO.NONSYN 24463508 0.40 0.12 3.51 2.25 3 1024 1.17 3 1022 GTEx pituitary

SCZ.COMPOSITE 24463508 0.23 0.07 3.28 5.21 3 1024 1.36 3 1022 GTEx pituitary

SCZ.COMPOSITE 24463508 0.27 0.08 3.19 7.03 3 1024 3.24 3 1022 GTEx basal ganglia

CONSTRAINED 25086666 0.27 0.09 2.97 1.50 3 1023 3.44 3 1022 CMC DLPFC RNA-seq

RBFOX1.RBFOX3 24613350 0.12 0.04 2.93 1.72 3 1023 3.44 3 1022 CMC DLPFC RNA-seq

PGC.SCZ.P10.4 24463508 0.27 0.10 2.73 3.20 3 1023 4.79 3 1022 CMC DLPFC RNA-seq

CMC, CommonMind Consortium; DLPFC, dorsolateral prefrontal cortex; FDR, false discovery rate; GTEx, Genotype Tissue Expression; RNA-
seq, RNA sequencing; SE, standard error; TWAS, transcriptome-wide association study.

aMultiple testing–corrected p value using FDR method.
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of which were novel. Second, with a series of follow-up ana-
lyses, we found 6 associations that were of high confidence,
based on their strong TWAS associations, colocalization, and
probability of causality. These findings highlight the tran-
scriptomic changes in MD that likely play a role in etiology of
the disorder, resulting from the same genetic variations as the
disorder and determining, in turn, transcriptomic changes at
nearby genes and pathways involved in key biological pro-
cesses. Such findings on key genes for depression can guide
future research on drug targets as well as candidate gene in-
vestigations in animal studies, where consequences of mo-
lecular alterations can be more readily observed by inducing
gene knockdown or upregulation.
Key Findings

When testing for an association between gene expression and
MD, we detected 94 transcriptome-wide significant genes,
Table 5. Hypothesis-free Gene Set Enrichment Results Based o

Gene Set Estima

GO.MACROMOLECULAR.COMPLEX.BINDING 0.46

GO.MICROTUBULE.BINDING 1.04

GO.ALCOHOL.BINDING 1.79

GO.CHROMATIN.BINDING 0.79

GO.PROTEIN.COMPLEX.BINDING 0.44

GO.LIGAND.DEPENDENT.NUCLEAR.RECEPTOR.BINDING 1.98

GO.REGULATION.OF.INTRINSIC.APOPTOTIC.SIGNALING.PATHWAY 1.79

FDR, false discovery rate; GTEx, Genotype Tissue Expression; SE, stan
aMultiple testing–corrected p value using FDR method.

B

differentially expressed across multiple tissues, thus demon-
strating the presence of widespread transcriptomic changes in
depression. Comparison with previous literature highlighted
the novelty of this study, which enabled the identification of 48
(compared with GWAS findings) and 53 (compared with pre-
vious TWASs) novel genes.

Further investigation of significant associations through a
conditional analysis determined whether gene associations
within the same genomic region represent independent asso-
ciations or whether multiple genes are associated owing to
correlated predicted expression. The 94 significant genes
represented 49 independent associations with depression,
suggesting that approximately half of the identified signal de-
pends on LD and correlated predicted expression of nearby
genes. The strength of association for each feature can be
affected by different characteristics of the SNP weight sets
(e.g., sample size), thus warranting cautionary interpretations
of which features are driving the associated loci. Comparison
n TWAS Results From Each Panel

te SE t p FDR pa Tissue

0.09 5.07 1.98 3 1027 5.99 3 1024 GTEx basal ganglia

0.22 4.68 1.46 3 1026 2.20 3 1023 GTEx basal ganglia

0.38 4.66 1.56 3 1026 5.16 3 1023 GTEx pituitary

0.19 4.19 1.42 3 1025 1.41 3 1022 GTEx basal ganglia

0.11 4.12 1.87 3 1025 1.41 3 1022 GTEx basal ganglia

0.50 3.98 3.47 3 1025 2.09 3 1022 GTEx basal ganglia

0.43 4.14 1.73 3 1025 3.30 3 1022 GTEx amygdala

dard error; TWAS, transcriptome-wide association study.

iological Psychiatry - -, 2020; -:-–- www.sobp.org/journal 7

http://www.sobp.org/journal


Transcriptome-wide Association Study of Major Depression
Biological
Psychiatry
of the GWAS summary statistics before and after conditioning
on significant TWAS associations additionally revealed that
GWAS associations were explained to a major extent by TWAS
associations, further suggesting the possibility of tran-
scriptomic mediation of genetic risk for depression.

When exploring whether significant associations were
driven by pleiotropy or linkage using a colocalization analysis,
we observed that 53 transcription-MD relationships derived
from the same causal polymorphisms underlying SNP-MD
associations. This indicated that most of the detected genes
constituted pleiotropic effects as opposed to linkage. While
these findings suggest that transcription mediates the rela-
tionship between genetic susceptibility and depression,
colocalization does not test for such relationships, and it
cannot identify specific causal variants (8).

To gain further insight into which genes are likely causal for
MD, we used a TWAS fine mapping approach called FOCUS.
In some instances, FOCUS clearly highlighted a single feature
as the causal association, such as the upregulation of NEGR1
in the blood. Of the 23 genes with a high probability of cau-
sality estimated by FOCUS, 11 were identified as colocalized.
A key distinction between these methods is that colocalization
assumes a single causal variant, whereas FOCUS allows for
multiple causal variants.

Six high-confidence associations were identified. Notably,
none of these were found by previous TWASs on other psy-
chiatric phenotypes (e.g., bipolar disorder) (11,28,29). Of the
high-confidence associations, 3 should be highlighted owing
to their functional role: NEGR1, ESR2, and TMEM106B. SNPs
within these 3 genes have been previously detected in one or
more GWASs of depression (4,5,30). Our study contributed to
previous literature by elucidating the functional characteristics
of such genes, showing upregulation for NEGR1 and
TMEM106B and downregulation for ESR2.

NEGR1 plays a role in axon extension, synaptic plasticity,
and synapse formation, processes key to neuronal functioning
(31–33). Moreover, it includes variants found to be related to
obesity, a trait repeatedly correlated with MD, at both pheno-
typic and biological levels (34). ESR2 regulates the activity of
estrogen, a sex hormone involved in HPA axis activity and
inflammation (35,36). Estrogen fluctuations across a woman’s
life span, for example, during premenstrual monthly period and
menopause, have been proposed as a risk factor for depres-
sion (37). However, it remains unclear whether the risk is driven
by estrogen or other co-occurring hormonal changes (37,38).
TMEM106B was previously implicated as a susceptibility gene
for neurodegenerative disorders (39–41) and TDP-43 abnor-
malities (40), which are featured in such pathologies (40–42).
Depression has been repeatedly suggested as a risk factor for
neurodegenerative disorders (43–45). Moreover, TDP-43 pro-
teinopathy was shown in a small sample of patients with late-
life depression (46). Overall, while previous literature points to
an important role of these genes in depression and related
phenotypes, replication of associations is necessary as well as
greater insight into the relationship between estrogen levels
and TDP-43 with MD.

TWAS-GSEA was able to identify several gene sets showing
dysregulated expression in individuals with MD. The enriched
gene sets are congruent with a previous GWAS-based
enrichment analysis (5), corroborating the importance, among
8 Biological Psychiatry - -, 2020; -:-–- www.sobp.org/journal
others, of genes bound by transcription factors (RBFOX1,
RBFOX2, RBFOX3, FMRP) and genes encoding synaptic
proteins and ion channels. Novel enriched pathways were also
found for key biological functions such as protein and
macromolecular complex binding. Replication is warranted.

Limitations of Present Study and Suggestions for
Future Research

While these findings are promising, several limitations merit
discussion. First, the small sample sizes of the gene expres-
sion reference samples may have impeded the detection of
subtle effects of the transcriptome on depression, meaning
that larger samples are needed. Second, the wide range of MD
definitions within the GWAS samples, ranging from self-
reported depression (e.g., 23andMe) to clinical diagnosis
(e.g., iPSYCH), might impact results. Future studies could
investigate to what extent minimal phenotyping affects find-
ings at the transcriptomic level compared with more robust
definitions. Third, we analyzed a wider set of tissues than
previous MD TWASs, with 21 distinct SNP weight sets from
blood, brain, and HPA/HPT axes. This may uncover more true
associations but may also have introduced noise, as using
tissues not strictly relevant to depression might capture
noncausal genes (47). Nonetheless, tested tissues were
selected based on previous literature, meaning that such tis-
sues are supposedly disease relevant. An alternative strategy
would be to use data-driven tissue selection, leveraging an LD
score regression-based method (48). Moreover, valuable eQTL
data (e.g., eQTLGen Consortium) were not used because of
the lack of precomputed SNP weight and access to individual-
level data (for weights development). We nevertheless
recommend the calculation of such weights when possible.
Furthermore, our TWAS approach, by solely assessing the cis-
genetic component of gene expression, cannot capture trans-
eQTL effects. Future research should channel resources
toward building larger gene expression reference panels to
enable investigation of trans-eQTL effects. Lastly, while this
study provided further insight into the relationship between
SNPs, gene expression, and depression and used colocaliza-
tion and causal fine mapping analyses to test certain criteria of
a causal model, it cannot verify causality between associated
genes and depression.

In conclusion, we provide evidence for widespread tran-
scriptomic changes in MD. Our study enables the detection of
novel associations and the elucidation of the transcriptomic
changes that previously identified risk genes undergo. We
underline genes that might be of key relevance to depression,
including NEGR1, ESR2, and TMEM106B. These results sug-
gest an important role of the genetic component of gene
expression in depression.
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