161 research outputs found

    Targeted therapies in the management of locally advanced and metastatic pancreatic cancer: a systematic review

    Get PDF
    Pancreatic cancer has a dismal prognosis particularly in patients presenting with unresectable tumors. We performed a bibliometric analysis of clinical trials for pancreatic cancer conducted between 2014-2016 focusing on patients that presented with unresectable (locally advanced or metastatic) tumors. We discuss a range of studies that employed FOLFIRINOX, the gemcitabine + nab-paclitaxel combination and studies that used molecularly-targeted therapy. Major areas of focus have been dual targeting of EGFR and VEGFR, immunotherapy or a multimodal approach – combining chemotherapy with radiotherapy. We also point out the need for molecular selection for low prevalence subtypes. Key insights sourced from these pivotal trials should improve clinical outcomes for this devastating cancer

    Reduced Retinal Microvascular Density, Improved Forepaw Reach, Comparative Microarray and Gene Set Enrichment Analysis with c-jun Targeting DNA Enzyme

    Get PDF
    Retinal neovascularization is a critical component in the pathogenesis of common ocular disorders that cause blindness, and treatment options are limited. We evaluated the therapeutic effect of a DNA enzyme targeting c-jun mRNA in mice with pre-existing retinal neovascularization. A single injection of Dz13 in a lipid formulation containing N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine inhibited c-Jun expression and reduced retinal microvascular density. The DNAzyme inhibited retinal microvascular density as effectively as VEGF-A antibodies. Comparative microarray and gene expression analysis determined that Dz13 suppressed not only c-jun but a range of growth factors and matrix-degrading enzymes. Dz13 in this formulation inhibited microvascular endothelial cell proliferation, migration and tubule formation in vitro. Moreover, animals treated with Dz13 sensed the top of the cage in a modified forepaw reach model, unlike mice given a DNAzyme with scrambled RNA-binding arms that did not affect c-Jun expression. These findings demonstrate reduction of microvascular density and improvement in forepaw reach in mice administered catalytic DNA.This work was supported by grants from Cancer Institute NSW and the National Health and Medical Research Council (NHMRC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Yin Yang-1 inhibits tumor cell growth and inhibits p21(WAF1/Cip1) complex formation with Cdk4 and cyclin D1

    Get PDF
    The GLI-Krüppel zinc finger factor yin yang-1 (YY1) is a complex protein that regulates a variety of processes including transcription, proliferation, development and differentiation. YY1 inhibits cell growth in a cell typespecific manner. The role play

    Targeted therapies in the management of locally advanced and metastatic pancreatic cancer: A systematic review

    Get PDF
    Pancreatic cancer has a dismal prognosis particularly in patients presenting with unresectable tumors. We performed a bibliometric analysis of clinical trials for pancreatic cancer conducted between 2014-2016 focusing on patients that presented with unresectable (locally advanced or metastatic) tumors. We discuss a range of studies that employed FOLFIRINOX, the gemcitabine + nab-paclitaxel combination and studies that used molecularly-targeted therapy. Major areas of focus have been dual targeting of EGFR and VEGFR, immunotherapy or a multimodal approach – combining chemotherapy with radiotherapy. We also point out the need for molecular selection for low prevalence subtypes. Key insights sourced from these pivotal trials should improve clinical outcomes for this devastating cancer

    Developing neolignans as proangiogenic agents: Stereoselective total syntheses and preliminary biological evaluations of the four guaiacylglycerol 8-O-4'-coniferyl ethers

    Get PDF
    Stereoselective total syntheses of the four stereoisomeric forms of guaiacylglycerol 8-O-4′-coniferyl ether, viz., compounds 1, ent- 1, 2, and ent- 2, have been established. The key step involves an Evans/Seebach auxiliarycontrolled and syn-selective aldol process followed, in the reaction sequences leading to the anti-compounds, by a Mitsunobu reaction involving a benzylic alcohol residue. The proangiogenic properties of the synthetic materials were evaluated in a human microvascular endothelial cell tubule formation assay, thus revealing that they are all active, with the 8S-configured compounds 1 and 2 being the most potent.We thank the National Health and Medical Research Council, the Australian Research Council, and the Institute of Advanced Studies for financial support. J.N.B. is the grateful recipient of a Ph.D. Scholarship provided by the Australian Government. Dr. Hideki Onagi is thanked for assistance with chiral HPLC analyses. L.M.K. is a NH&MRC Australia Fellow

    Sp1, Acetylated Histone-3 and p300 Regulate TRAIL Transcription: Mechanisms of PDGF-BB-mediated VSMC Proliferation and Migration

    Get PDF
    We recently reported that TNF-related apoptosis-inducing ligand (TRAIL) is important in atherogenesis, since it can induce vascular smooth muscle cell (VSMC) proliferation and arterial thickening following injury. Here we show the first demonstrate that TRAIL siRNA reduces platelet-derived growth factor-BB (PDGF-BB)-stimulated VSMC proliferation and migration. PDGF-BB-inducible VSMC proliferation was completely inhibited in VSMCs isolated from aortas of TRAIL(-/-) mice; whereas inducible migration was blocked compared to control VSMCs. TRAIL transcriptional control mediating this response is not established. TRAIL mRNA, protein and promoter activity was increased by PDGF-BB and subsequently inhibited by dominant-negative Sp1, suggesting that the transcription factor Sp1 plays a role. Sp1 bound multiple Sp1 sites on the TRAIL promoter, including two established (Sp1-1 and -2) and two novel Sp1-5/6 and -7 sites. PDGF-BB-inducible TRAIL promoter activity by Sp1 was mediated through these sites, since transverse mutations to each abolished inducible activity. PDGF-BB stimulation increased acetylation of histone-3 (ac-H3) and expression of the transcriptional co-activator p300, implicating chromatin remodelling. p300 overexpression increased TRAIL promoter activity, which was blocked by dominant-negative Sp1. Furthermore, PDGF-BB treatment increased the physical interaction of Sp1, p300 and ac-H3, while chromatin immunoprecipitation studies revealed Sp1, p300 and ac-H3 enrichment on the TRAIL promoter. Taken together, our studies demonstrate for the first time that PDGF-BB-induced TRAIL transcriptional activity requires the cooperation of Sp1, ac-H3 and p300, mediating increased expression of TRAIL which is important for VSMC proliferation and migration. Our findings have the promising potential for targeting TRAIL as a new therapeutic for vascular proliferative disorders

    Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response

    Get PDF
    <div><p>The immediate-early response mediates cell fate in response to a variety of extracellular stimuli and is dysregulated in many cancers. However, the specificity of the response across stimuli and cell types, and the roles of non-coding RNAs are not well understood. Using a large collection of densely-sampled time series expression data we have examined the induction of the immediate-early response in unparalleled detail, across cell types and stimuli. We exploit cap analysis of gene expression (CAGE) time series datasets to directly measure promoter activities over time. Using a novel analysis method for time series data we identify transcripts with expression patterns that closely resemble the dynamics of known immediate-early genes (IEGs) and this enables a comprehensive comparative study of these genes and their chromatin state. Surprisingly, these data suggest that the earliest transcriptional responses often involve promoters generating non-coding RNAs, many of which are produced in advance of canonical protein-coding IEGs. IEGs are known to be capable of induction without de novo protein synthesis. Consistent with this, we find that the response of both protein-coding and non-coding RNA IEGs can be explained by their transcriptionally poised, permissive chromatin state prior to stimulation. We also explore the function of non-coding RNAs in the attenuation of the immediate early response in a small RNA sequencing dataset matched to the CAGE data: We identify a novel set of microRNAs responsible for the attenuation of the IEG response in an estrogen receptor positive cancer cell line. Our computational statistical method is well suited to meta-analyses as there is no requirement for transcripts to pass thresholds for significant differential expression between time points, and it is agnostic to the number of time points per dataset.</p></div

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution
    corecore