28 research outputs found

    The molecular phylogenetics of the genus Oligoryzomys (Rodentia: Cricetidae) clarifies rodent host-Hantavirus associations

    Get PDF
    Several species of the genus Oligoryzomys are natural hosts of different hantavirus genotypes affecting humans. The systematics of the genus is confusing, which complicates the identification of the rodent host and hence the potential endemic areas of hantavirus pulmonary syndrome. In this study, we analyse molecular data to infer phylogenetic relationships among Central and South American specimens of Oligoryzomys, and compare our results with previously published data on karyotypic, geographic distribution and host–virus associations to solve contradictory taxonomic reports. We identified 25 clades, each one corresponding to a different putative species. The phylogenetic trees show that Oligoryzomys longicaudatus is strongly related to the Oligoryzomys flavescens complex, which comprises four clades; Oligoryzomys nigripes is related to Oligoryzomys stramineus, Oligoryzomys vegetus is related to Oligoryzomys fulvescens from Central America, and Oligoryzomys brendae is the sister species of Oligoryzomys aff. destructor. We identified the following rodent host–hantavirus genotype relationships: O. longicaudatus–Andes; O. flavescens ‘West'–Bermejo; O. flavescens ‘East'–Lechiguanas; O. nigripes–Juquitiba; Oligoryzomys microtis–Rio Mamore and Rio Mamore-3; Oligoryzomys chacoensis–Oran; Oligoryzomys costaricencis–Choclo; Oligoryzomys delicatus–Maporal; Oligoryzomys utiaritensis–Castelo dos Sonhos; Oligoryzomys sp. RT2012–Rio Mamore-4; Oligoryzomys sp. (and not Oligoryzomys fornesi)–Anajatuba. This work, besides contributing to the development of prevention programmes for hantavirus epidemiology in Latin America, represents a comprehensive update of the systematics of the genus Oligoryzomys.Fil: González Ittig, Raúl Enrique. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Cordoba. Instituto de Diversidad y Ecologia Animal; ArgentinaFil: Rivera, Paula Cecilia. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Cordoba. Instituto de Diversidad y Ecologia Animal; ArgentinaFil: Levis, Silvana C.. Direccion Nacional de Instituto de Investigacion. Adm.nacional de Laboratorio E Instituto de Salud "dr.c.g.malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: Calderón, Gladys E.. Direccion Nacional de Instituto de Investigacion. Adm.nacional de Laboratorio E Instituto de Salud "dr.c.g.malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: Gardenal, Cristina Noemi. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Cordoba. Instituto de Diversidad y Ecologia Animal; Argentin

    Seroprevalence of rodent-borne viruses in Afro-descendent communities in Brazil

    Get PDF
    During the Brazilian slavery period, many African migrants were brought to the American continent. Historically, some of these migrants escaped from the Brazilian gold mines and farms to which they had been brought and settled in remote valleys and this was the main mode of resistance to the slavery system. These runaway-slave descendant communities are called quilombos, a group with distinct ethnic identity, specific behavioral habits, including geographic isolation and conservative practices. The objective of this study was to investigate the prevalence of rodent-borne viruses in two Afro-descendent communities from Mato Grosso do Sul State, Midwestern Brazil. A total of 319 individuals from rural and urban quilombola communities were enrolled. Twelve (3.76%) had anti-rodent-borne virus IgG antibodies. Seven (2.19%) were anti-mammarenavirus reactive and nine (2.82%) had anti-orthohantavirus antibodies. The literature includes limited data on the health status of quilombola communities, but all the studies emphasize the disparity of attention of local healthcare personnel to these communities compared to the general population. The findings of this study highlight the vulnerability and the precarious health conditions of quilombola groups, especially those living in rural areas and thus, point to the need of preventive measures to improve access to healthcare for this ethnic group

    Vaccine-elicited receptor-binding site antibodies neutralize two New World hemorrhagic fever arenaviruses

    Get PDF
    While five arenaviruses cause human hemorrhagic fevers in the Western Hemisphere, only Junin virus (JUNV) has a vaccine. The GP1 subunit of their envelope glycoprotein binds transferrin receptor 1 (TfR1) using a surface that substantially varies in sequence among the viruses. As such, receptor-mimicking antibodies described to date are type-specific and lack the usual breadth associated with this mode of neutralization. Here we isolate, from the blood of a recipient of the live attenuated JUNV vaccine, two antibodies that cross-neutralize Machupo virus with varying efficiency. Structures of GP1–Fab complexes explain the basis for efficient cross-neutralization, which involves avoiding receptor mimicry and targeting a conserved epitope within the receptor-binding site (RBS). The viral RBS, despite its extensive sequence diversity, is therefore a target for cross-reactive antibodies with activity against New World arenaviruses of public health concern

    Vaccine-elicited receptor-binding site antibodies neutralize two New World hemorrhagic fever arenaviruses

    Get PDF
    While five arenaviruses cause human hemorrhagic fevers in the Western Hemisphere, only Junin virus (JUNV) has a vaccine. The GP1 subunit of their envelope glycoprotein binds transferrin receptor 1 (TfR1) using a surface that substantially varies in sequence among the viruses. As such, receptor-mimicking antibodies described to date are type-specific and lack the usual breadth associated with this mode of neutralization. Here we isolate, from the blood of a recipient of the live attenuated JUNV vaccine, two antibodies that cross-neutralize Machupo virus with varying efficiency. Structures of GP1–Fab complexes explain the basis for efficient cross-neutralization, which involves avoiding receptor mimicry and targeting a conserved epitope within the receptor-binding site (RBS). The viral RBS, despite its extensive sequence diversity, is therefore a target for cross-reactive antibodies with activity against New World arenaviruses of public health concern

    Detection of the mosquito-borne flaviviruses, West Nile, Dengue, Saint Louis Encephalitis, Ilheus, Bussuquara, and Yellow Fever in free-ranging black howlers (Alouatta caraya) of Northeastern Argentina

    Get PDF
    Several medically important mosquito-borne flaviviruses have been detected in Argentina in recent years: Dengue (DENV), St. Louis encephalitis (SLEV), West Nile (WNV) and Yellow Fever (YFV) viruses. Evidence of Bussuquara virus (BSQV) and Ilheus virus (ILHV) activity were found, but they have not been associated with human disease. Non-human primates can act as important hosts in the natural cycle of flaviviruses and serological studies can lead to improved understanding of virus circulation dynamics and host susceptibility. From July–August 2010, we conducted serological and molecular surveys in free–ranging black howlers (Alouatta caraya) captured in northeastern Argentina. We used 90% plaque-reduction neutralization tests (PRNT90) to analyze 108 serum samples for antibodies to WNV, SLEV, YFV, DENV (serotypes 1and 3), ILHV, and BSQV. Virus genome detection was performed using generic reverse transcription (RT)-nested PCR to identify flaviviruses in 51 antibody-negative animals. Seventy animals had antibodies for one or more flaviviruses for a total antibody prevalence of 64.8% (70/108). Monotypic (13/70, 19%) and heterotypic (27/70, 39%) patterns were differentiated. Specific neutralizing antibodies against WNV, SLEV, DENV-1, DENV-3, ILHV, and BSQV were found. Unexpectedly, the highest flavivirus antibody prevalence detected was to WNV with 9 (8.33%) monotypic responses. All samples tested by (RT)-nested PCR were negative for viral genome. This is the first detection of WNV-specific antibodies in black howlers from Argentina and the first report in free-ranging non-human primates from Latin-American countries. Given that no animals had specific neutralizing antibodies to YFV, our results suggest that the study population remains susceptible to YFV. Monitoring of these agents should be strengthened to detect the establishment of sylvatic cycles of flaviviruses in America and evaluate risks to wildlife and human health.Fil: Morales, Maria Alejandra. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: Fabbri, Cintia M.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: Zunino, Gabriel Eduardo. Universidad Nacional de General Sarmiento. Instituto del Conurbano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kowalewski, Miguel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia". Estación Biológica de Usos Múltiples (Sede Corrientes); ArgentinaFil: Luppo, Victoria C.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: Enría, Delia A.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: Levis, Silvana C.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: Calderón, Gladys Ethel. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; Argentin

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    New Strains of Culex flavivirus Isolated in Argentina

    No full text
    Strains of Culex flavivirus (CxFV), an insect virus isolated initially from Japan, were isolated from different species of Culex sp. mosquitoes collected in Corrientes province, Argentina, during 2009. CxFV was detected by reverse transcription polymerase chain reaction and by isolation in C6/36 cell culture. Phylogenetic analysis of nucleotide sequences showed that these strains are related closely to a CxFV strain isolated from Trinidad. Our study represents the first report of CxFV isolation and characterization in Argentina from the same geographic area where West Nile Virus has been detected. Further evaluation and viral competition studies will be necessary to determine the impact of this insect flavivirus on an infection caused by other pathogenic flaviviruses.Fil: Goenaga, Silvina. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fabbri, Cintia M.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: García, Jorge B.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: Rondan, Juan C.. Provincia de Córdoba. Ministerio de Ciencia y Técnica. Centro de Excelencia en Productos y Procesos de Córdoba; ArgentinaFil: Gardenal, Cristina Noemi. Provincia de Córdoba. Ministerio de Ciencia y Técnica. Centro de Excelencia en Productos y Procesos de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Calderón, Gladys E.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: Enria, Delia A.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: Levis, Silvana M. C.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; Argentin
    corecore