1,873 research outputs found

    Si/SiGe bound-to-continuum quantum cascade emitters

    Get PDF
    Si/SiGe bound-to-continuum quantum cascade emitters designed by self-consistent 6-band k.p modeling and grown by low energy plasma enhanced chemical vapour deposition are presented demonstrating electroluminescence between 1.5 and 3 THz. The electroluminescence is Stark shifted by an electric field and demonstrates polarized emission consistent with the design. Transmission electron microscopy and x-ray diffraction are also presented to characterize the thick heterolayer structure

    Ge-on-Si single-photon avalanche diode detectors: design, modeling, fabrication, and characterization at wavelengths 1310 and 1550 nm

    Get PDF
    The design, modeling, fabrication, and characterization of single-photon avalanche diode detectors with an epitaxial Ge absorption region grown directly on Si are presented. At 100 K, a single-photon detection efficiency of 4% at 1310 nm wavelength was measured with a dark count rate of ~ 6 megacounts/s, resulting in the lowest reported noise-equivalent power for a Ge-on-Si single-photon avalanche diode detector (1×10-14 WHz-1/2). The first report of 1550 nm wavelength detection efficiency measurements with such a device is presented. A jitter of 300 ps was measured, and preliminary tests on after-pulsing showed only a small increase (a factor of 2) in the normalized dark count rate when the gating frequency was increased from 1 kHz to 1 MHz. These initial results suggest that optimized devices integrated on Si substrates could potentially provide performance comparable to or better than that of many commercially available discrete technologies

    Reinforcement Learning Agents acquire Flocking and Symbiotic Behaviour in Simulated Ecosystems

    Get PDF
    In nature, group behaviours such as flocking as well as cross-species symbiotic partnerships are observed in vastly different forms and circumstances. We hypothesize that such strategies can arise in response to generic predator-prey pressures in a spatial environment with range-limited sensation and action. We evaluate whether these forms of coordination can emerge by independent multi-agent reinforcement learning in simple multiple-species ecosystems. In contrast to prior work, we avoid hand-crafted shaping rewards, specific actions, or dynamics that would directly encourage coordination across agents. Instead we test whether coordination emerges as a consequence of adaptation without encouraging these specific forms of coordination, which only has indirect benefit. Our simulated ecosystems consist of a generic food chain involving three trophic levels: apex predator, mid-level predator, and prey. We conduct experiments on two different platforms, a 3D physics engine with tens of agents as well as in a 2D grid world with up to thousands. The results clearly confirm our hypothesis and show substantial coordination both within and across species. To obtain these results, we leverage and adapt recent advances in deep reinforcement learning within an ecosystem training protocol featuring homogeneous groups of independent agents from different species (sets of policies), acting in many different random combinations in parallel habitats. The policies utilize neural network architectures that are invariant to agent individuality but not type (species) and that generalize across varying numbers of observed other agents. While the emergence of complexity in artificial ecosystems have long been studied in the artificial life community, the focus has been more on individual complexity and genetic algorithms or explicit modelling, and less on group complexity and reinforcement learning emphasized in this article. Unlike what the name and intuition suggests, reinforcement learning adapts over evolutionary history rather than a life-time and is here addressing the sequential optimization of fitness that is usually approached by genetic algorithms in the artificial life community. We utilize a shift from procedures to objectives, allowing us to bring new powerful machinery to bare, and we see emergence of complex behaviour from a sequence of simple optimization problems

    Si/SiGe quantum cascade superlattice designs for terahertz emission

    Get PDF
    Quantum cascade lasers are compact sources that have demonstrated high output powers at THz frequencies. To date all THz quantum cascade lasers have been realized in III-V materials. Results are presented from Si1−xGex quantum cascade superlattice designs emitting at around 3 THz which have been grown in two different chemical vapor deposition systems. The key to achieving successful electroluminescence at THz frequencies in a p-type system has been to strain the light-hole states to energies well above the radiative subband states. To accurately model the emission wavelengths, a 6-band k.p tool which includes the effects of non-abrupt heterointerfaces has been used to predict the characteristics of the emitters. X-ray diffraction and transmission electron microscopy have been used along with Fourier transform infrared spectroscopy to fully characterise the samples. A number of methods to improve the gain from the designs are suggested

    Eliciting a predatory response in the eastern corn snake (Pantherophis guttatus) using live and inanimate sensory stimuli: implications for managing invasive populations

    Get PDF
    North America's Eastern corn snake (Pantherophis guttatus) has been introduced to several islands throughout the Caribbean and Australasia where it poses a significant threat to native wildlife. Invasive snake control programs often involve trapping with live bait, a practice that, as well as being costly and labour intensive, raises welfare and ethical concerns. This study assessed corn snake response to live and inanimate sensory stimuli in an attempt to inform possible future trapping of the species and the development of alternative trap lures. We exposed nine individuals to sensory cues in the form of odour, visual, vibration and combined stimuli and measured the response (rate of tongue-flick [RTF]). RTF was significantly higher in odour and combined cues treatments, and there was no significant difference in RTF between live and inanimate cues during odour treatments. Our findings suggest chemical cues are of primary importance in initiating predation and that an inanimate odour stimulus, absent of simultaneous visual and vibratory cues, is a potential low-cost alternative trap lure for the control of invasive corn snake populations

    Synthesis and characterisation of ruthenium complexes containing a pendent catechol ring

    Get PDF
    A series of [Ru(bipy)₂L]⁺ and [Ru(phen)₂L]⁺ complexes where L is 2-[5-(3,4-dimethoxyphenyl)-4H-1,2,4-triazol-3-yl]pyridine (HL1) and 4-(5-pyridin-2-yl-4H-1,2,4-triazol-3-yl)benzene-1,2-diol (HL2) are reported. The compounds obtained have been characterised using X-ray crystallography, NMR, UV/Vis and emission spectroscopies. Partial deuteriation is used to determine the nature of the emitting state and to simplify the NMR spectra. The acid-base properties of the compounds are also investigated. The electronic structures of [Ru(bipy)₂L1]⁺ and Ru(bipy)₂HL1]²⁺ are examined using ZINDO. Electro and spectroelectrochemical studies on [Ru(bipy)₂(L2)]⁺ suggest that proton transfer between the catechol and triazole moieties on L2 takes place upon oxidation of the L2 ligand

    Pressure-Induced Two-Color Photoluminescence in MnF2 at Room Temperature

    Get PDF
    A novel two-color photoluminescence (PL) is found in MnF2 at room temperature under high pressure. Contrary to low-temperature PL, PL at room temperature is unusual in transition-metal concentrated materials like MnF2, since the deexcitation process at room temperature is fully governed by energy transfer to nonradiative centers. We show that room-temperature PL in MnF2 originates from two distinct Mn2 emissions in the high-pressure cotunnite phase. The electronic structure and the excited-state dynamics are investigated by time-resolved emission and excitation spectroscopy at high pressure

    Europe’s perennial "outsiders": a processual approach to Roma stigmatization and ghettoization

    Get PDF
    This paper draws on the theoretical work of Norbert Elias and Loïc Wacquant in seeking to understand the stigmatized and marginalized position of the Roma population within Europe. The paper argues that the persistent persecution of Roma, reflected in social policy, cannot be understood without reference to long-term social processes, which shape the nature of the asymmetric power relations between Roma and non-Roma. Elias's theory of established-outsider relations is applied at the intra-state European level in arguing that Roma constitute a cross-border "outsider" group; with their intense stigmatization explained and perpetuated by a common set of collective fantasies which are maintained through complex group processes of disidentification, and which result in Roma being seen as of lesser human worth. Wacquant's theoretical concept of the "ghetto" is then drawn upon to show how the manifestations of stigmatization for the stigmatized are at once psychological, social and spatial. The paper suggests that the synthesis of the two theorists' relational, theoretical concepts allows for an approach that can expose the way in which power is exercised within and through group relations. Such an approach emphasizes the centrality of the interdependence between Roma and non-Roma, and the fluctuating power balance that characterises that relationship across time and space. The paper concludes that, while existing research focused on policy and outcomes is useful in understanding the negative contemporary experiences of Roma populations, they need to be understood in the context of wider social processes and historical continuities in seeking to elucidate how these processes shape policies and contribute to social and spatial marginalization

    Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: A pivotal interplay in the pathogenesis of Atopic Dermatitis

    Get PDF
    Individuals with Atopic dermatitis (AD) are highly susceptible to Staphylococcus aureus colonization. However, the mechanisms driving this process as well as the impact of S. aureus in AD pathogenesis are still incompletely understood. In this study, we analysed the role of biofilm in sustaining S. aureus chronic persistence and its impact on AD severity. Further we explored whether key inflammatory cytokines overexpressed in AD might provide a selective advantage to S. aureus. Results show that the strength of biofilm production by S. aureus correlated with the severity of the skin lesion, being significantly higher (P < 0.01) in patients with a more severe form of the disease as compared to those individuals with mild AD. Additionally, interleukin (IL)-β and interferon γ (IFN-γ), but not interleukin (IL)-6, induced a concentration-dependent increase of S. aureus growth. This effect was not observed with coagulase-negative staphylococci isolated from the skin of AD patients. These findings indicate that inflammatory cytokines such as IL1-β and IFN-γ, can selectively promote S. aureus outgrowth, thus subverting the composition of the healthy skin microbiome. Moreover, biofilm production by S. aureus plays a relevant role in further supporting chronic colonization and disease severity, while providing an increased tolerance to antimicrobials

    Effect of betaine supplementation on plasma nitrate/nitrite in exercise-trained men

    Get PDF
    Background: Betaine, beetroot juice, and supplemental nitrate have recently been reported to improve certain aspects of exercise performance, which may be mechanistically linked to increased nitric oxide. The purpose of the present study was to investigate the effect of betaine supplementation on plasma nitrate/nitrite, a surrogate marker or nitric oxide, in exercise-trained men.Methods: We used three different study designs (acute intake of betaine at 1.25 and 5.00 grams, chronic intake of betaine at 2.5 grams per day for 14 days, and chronic [6 grams of betaine per day for 7 days] followed by acute intake [6 grams]), all involving exercise-trained men, to investigate the effects of orally ingested betaine on plasma nitrate/nitrite. Blood samples were collected before and at 30, 60, 90, and 120 min after ingestion of 1.25 and 5.00 grams of betaine (Study 1); before and after 14 days of betaine supplementation at a dosage of 2.5 grams (Study 2); and before and after 7 days of betaine supplementation at a dosage of 6 grams, followed by acute ingestion of 6 grams and blood measures at 30 and 60 min post ingestion (Study 3).Results: In Study 1, nitrate/nitrite was relatively unaffected and no statistically significant interaction (p = 0.99), dosage (p = 0.69), or time (p = 0.91) effects were noted. Similar findings were noted in Study 2, with no statistically significant interaction (p = 0.57), condition (p = 0.98), or pre/post intervention (p = 0.17) effects noted for nitrate/nitrite. In Study 3, no statistically significant changes were noted in nitrate/nitrite between collection times (p = 0.97).Conclusion: Our data indicate that acute or chronic ingestion of betaine by healthy, exercise-trained men does not impact plasma nitrate/nitrite. These findings suggest that other mechanisms aside from increasing circulating nitric oxide are likely responsible for any performance enhancing effect of betaine supplementation. © 2011 Bloomer et al; licensee BioMed Central Ltd
    corecore