22 research outputs found

    HgGa2Se4 under high pressure: an optical absorption study

    Full text link
    High-pressure optical absorption measurements have been performed in defect chalcopyrite HgGa2Se4 to investigate the influence of pressure on the bandgap energy and its relation with the pressure-induced order-disorder processes that occur in this ordered-vacancy compound. Two different experiments have been carried out in which the sample undergoes either a partial or a total pressure-induced disorder process at 15.4 and 30.8GPa, respectively. It has been found that the direct bandgap energies of the recovered samples at 1GPa were around 0.15 and 0.23eV smaller than that of the original sample, respectively, and that both recovered samples have different pressure coefficients of the direct bandgap than the original sample. A comprehensive explanation for these results on the basis of pressure-induced order-disorder processes is provided.This study was supported by the Spanish government MEC under Grants No: MAT2010-21270-C04-01/03/04 and MAT2013-46649-C4-1/2/3-P, by MALTA Consolider Ingenio 2010 project (CSD2007-00045), by Generalitat Valenciana (GVA-ACOMP-2013-1012 and GVA-ACOMP-2014-243), and by the Vicerrectorado de Investigacion y Desarrollo of the Universitat Politecnica de Valencia (UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11). E. P.-G., J. L.-S., P. R.-H, and A. M. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster. J.R.-F. thanks the Alexander von Humboldt foundation for a postdoctoral fellowship.Gomis, O.; Vilaplana Cerda, RI.; Manjón Herrera, FJ.; Ruiz-Fuertes, J.; Pérez-González, E.; López-Solano, J.; Bandiello, E.... (2015). HgGa2Se4 under high pressure: an optical absorption study. physica status solidi (b). 252(9):2043-2051. https://doi.org/10.1002/pssb.201451714S204320512529Bernard, J. E., & Zunger, A. (1988). Ordered-vacancy-compound semiconductors: PseudocubicCdIn2Se4. Physical Review B, 37(12), 6835-6856. doi:10.1103/physrevb.37.6835Jiang, X., & Lambrecht, W. R. L. (2004). Electronic band structure of ordered vacancy defect chalcopyrite compounds with formulaII−III2−VI4. Physical Review B, 69(3). doi:10.1103/physrevb.69.035201Burlakov, I. I., Raptis, Y., Ursaki, V. V., Anastassakis, E., & Tiginyanu, I. M. (1997). Order-disorder phase transition in CdAl2S4 under hydrostatic pressure. Solid State Communications, 101(5), 377-381. doi:10.1016/s0038-1098(96)00602-3Gonz�lez, J., Rico, R., Calder�n, E., Quintero, M., & Morocoima, M. (1999). Absorption Edge of MnGa2Se4 Single Crystals under Hydrostatic Pressure. physica status solidi (b), 211(1), 45-49. doi:10.1002/(sici)1521-3951(199901)211:13.0.co;2-8Ursaki, V. V., Burlakov, I. I., Tiginyanu, I. M., Raptis, Y. S., Anastassakis, E., & Anedda, A. (1999). Phase transitions in defect chalcopyrite compounds under hydrostatic pressure. Physical Review B, 59(1), 257-268. doi:10.1103/physrevb.59.257Grzechnik, A., Ursaki, V. V., Syassen, K., Loa, I., Tiginyanu, I. M., & Hanfland, M. (2001). Pressure-Induced Phase Transitions in Cadmium Thiogallate CdGa2Se4. Journal of Solid State Chemistry, 160(1), 205-211. doi:10.1006/jssc.2001.9224Mitani, T., Onari, S., Allakhverdiev, K., Gashimzade, F., & Kerimova, T. (2001). Raman Scattering in CdGa2S4 under Pressure. physica status solidi (b), 223(1), 287-291. doi:10.1002/1521-3951(200101)223:13.0.co;2-bTatsi, A., Lampakis, D., Liarokapis, E., Lopez, S. A., Martinez, L., & Giriat, W. (2002). Pressure Effects in Phonon Modes and Structure of A II B 2 III C 4 IV Compounds and Combinations. High Pressure Research, 22(1), 89-93. doi:10.1080/08957950211338Tiginyanu, I. M., Ursaki, V. V., Manjón, F. J., & Tezlevan, V. E. (2003). Raman scattering study of pressure-induced phase transitions in AIIB2IIIC4VI defect chalcopyrites and spinels. Journal of Physics and Chemistry of Solids, 64(9-10), 1603-1607. doi:10.1016/s0022-3697(03)00098-2Mitani, T., Naitou, T., Matsuishi, K., Onari, S., Allakhverdiev, K., Gashimzade, F., & Kerimova, T. (2003). Raman scattering in CdGa2Se4 under pressure. physica status solidi (b), 235(2), 321-325. doi:10.1002/pssb.200301579Allakhverdiev, K., Gashimzade, F., Kerimova, T., Mitani, T., Naitou, T., Matsuishi, K., & Onari, S. (2003). Raman scattering under pressure in ZnGa2Se4. Journal of Physics and Chemistry of Solids, 64(9-10), 1597-1601. doi:10.1016/s0022-3697(03)00077-5Marquina, J., Power, C., Grima, P., Morocoima, M., Quintero, M., Couzinet, B., … González, J. (2006). Crystallographic properties of the MnGa2Se4 compound under high pressure. Journal of Applied Physics, 100(9), 093513. doi:10.1063/1.2358826Meenakshi, S., Vijyakumar, V., Godwal, B. K., Eifler, A., Orgzall, I., Tkachev, S., & Hochheimer, H. D. (2006). High pressure X-ray diffraction study of CdAl2Se4 and Raman study of AAl2Se4 (A=Hg, Zn) and CdAl2X4 (X=Se, S). Journal of Physics and Chemistry of Solids, 67(8), 1660-1667. doi:10.1016/j.jpcs.2006.02.015Errandonea, D., Kumar, R. S., Manjón, F. J., Ursaki, V. V., & Tiginyanu, I. M. (2008). High-pressure x-ray diffraction study on the structure and phase transitions of the defect-stannite ZnGa2Se4 and defect-chalcopyrite CdGa2S4. Journal of Applied Physics, 104(6), 063524. doi:10.1063/1.2981089Meenakshi, S., Vijayakumar, V., Eifler, A., & Hochheimer, H. D. (2010). Pressure-induced phase transition in defect Chalcopyrites HgAl2Se4 and CdAl2S4. Journal of Physics and Chemistry of Solids, 71(5), 832-835. doi:10.1016/j.jpcs.2010.02.007Singh, P., Sharma, M., Verma, U. P., & Jensen, P. (2010). Pressure effects on energy gaps and phase transitions in ZnAl2Se4. Zeitschrift für Kristallographie, 225(11). doi:10.1524/zkri.2010.1301Manjón, F. J., Gomis, O., Rodríguez-Hernández, P., Pérez-González, E., Muñoz, A., Errandonea, D., … Ursaki, V. V. (2010). Nonlinear pressure dependence of the direct band gap in adamantine ordered-vacancy compounds. Physical Review B, 81(19). doi:10.1103/physrevb.81.195201Verma, U. P., Singh, P., & Jensen, P. (2011). A study of the electronic, optical and thermal properties for ZnAl2Se4 using the FP-LAPW method. physica status solidi (b), 248(7), 1682-1689. doi:10.1002/pssb.201046389Gomis, O., Vilaplana, R., Manjón, F. J., Pérez-González, E., López-Solano, J., Rodríguez-Hernández, P., … Ursaki, V. V. (2012). High-pressure optical and vibrational properties of CdGa2Se4: Order-disorder processes in adamantine compounds. Journal of Applied Physics, 111(1), 013518. doi:10.1063/1.3675162Gomis, O., Vilaplana, R., Manjón, F. J., Santamaría-Pérez, D., Errandonea, D., Pérez-González, E., … Ursaki, V. V. (2013). Crystal structure of HgGa2Se4 under compression. Materials Research Bulletin, 48(6), 2128-2133. doi:10.1016/j.materresbull.2013.02.037Gomis, O., Vilaplana, R., Manjón, F. J., Santamaría-Pérez, D., Errandonea, D., Pérez-González, E., … Ursaki, V. V. (2013). High-pressure study of the structural and elastic properties of defect-chalcopyrite HgGa2Se4. Journal of Applied Physics, 113(7), 073510. doi:10.1063/1.4792495Vilaplana, R., Robledillo, M., Gomis, O., Sans, J. A., Manjón, F. J., Pérez-González, E., … Ursaki, V. V. (2013). Vibrational study of HgGa2S4under high pressure. Journal of Applied Physics, 113(9), 093512. doi:10.1063/1.4794096Vilaplana, R., Gomis, O., Pérez-González, E., Ortiz, H. M., Manjón, F. J., Rodríguez-Hernández, P., … Tiginyanu, I. M. (2013). High-pressure Raman scattering study of defect chalcopyrite and defect stannite ZnGa2Se4. Journal of Applied Physics, 113(23), 233501. doi:10.1063/1.4810854Vilaplana, R., Gomis, O., Manjón, F. J., Ortiz, H. M., Pérez-González, E., López-Solano, J., … Tiginyanu, I. M. (2013). Lattice Dynamics Study of HgGa2Se4at High Pressures. The Journal of Physical Chemistry C, 117(30), 15773-15781. doi:10.1021/jp402493rGomis, O., Santamaría-Pérez, D., Vilaplana, R., Luna, R., Sans, J. A., Manjón, F. J., … Ursaki, V. V. (2014). Structural and elastic properties of defect chalcopyrite HgGa2S4 under high pressure. Journal of Alloys and Compounds, 583, 70-78. doi:10.1016/j.jallcom.2013.08.123Errandonea, D., Kumar, R. S., Gomis, O., Manjón, F. J., Ursaki, V. V., & Tiginyanu, I. M. (2013). X-ray diffraction study on pressure-induced phase transformations and the equation of state of ZnGa2Te4. Journal of Applied Physics, 114(23), 233507. doi:10.1063/1.4851735Sans, J. Á., Santamaría-Pérez, D., Popescu, C., Gomis, O., Manjón, F. J., Vilaplana, R., … Tiginyanu, I. M. (2014). Structural and Vibrational Properties of CdAl2S4under High Pressure: Experimental and Theoretical Approach. The Journal of Physical Chemistry C, 118(28), 15363-15374. doi:10.1021/jp5037926Manjón, F. J., & Vilaplana, R. I. (2014). AB2S4\mathrm {AB}_{2}\text {S}_{4} Ordered-Vacancy Compounds at High Pressures. Springer Series in Materials Science, 133-161. doi:10.1007/978-3-642-40367-5_5Gomis, Ó., & Manjón, F. J. (2014). AB2Se4\mathrm{AB}_{2} \text {Se}_{4} Ordered-Vacancy Compounds at High Pressures. Springer Series in Materials Science, 163-184. doi:10.1007/978-3-642-40367-5_6Muñoz, A., & Fuentes-Cabrera, M. (2014). Theoretical Ab Initio Calculations in Ordered-Vacancy Compounds at High Pressures. Springer Series in Materials Science, 185-210. doi:10.1007/978-3-642-40367-5_7Santamaría-Pérez, D., Gomis, O., Pereira, A. L. J., Vilaplana, R., Popescu, C., Sans, J. A., … Tiginyanu, I. M. (2014). Structural and Vibrational Study of Pseudocubic CdIn2Se4under Compression. The Journal of Physical Chemistry C, 118(46), 26987-26999. doi:10.1021/jp5077565Letoullec, R., Pinceaux, J. P., & Loubeyre, P. (1988). The membrane diamond anvil cell: A new device for generating continuous pressure and temperature variations. High Pressure Research, 1(1), 77-90. doi:10.1080/08957958808202482Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673González-Leal, J.-M., Prieto-Alcón, R., Angel, J.-A., Minkov, D. A., & Márquez, E. (2002). Influence of substrate absorption on the optical and geometrical characterization of thin dielectric films. Applied Optics, 41(34), 7300. doi:10.1364/ao.41.007300Eggert, J. H., Xu, L., Che, R., Chen, L., & Wang, J. (1992). High pressure refractive index measurements of 4:1 methanol:ethanol. Journal of Applied Physics, 72(6), 2453-2461. doi:10.1063/1.351591Errandonea, D., Manj�n, F. J., Pellicer, J., Segura, A., & Mu�oz, V. (1999). Direct to Indirect Crossover in III-VI Layered Compounds and Alloys under Pressure. physica status solidi (b), 211(1), 33-38. doi:10.1002/(sici)1521-3951(199901)211:13.0.co;2-mManjón, F. J., Errandonea, D., Segura, A., Muñoz, V., Tobías, G., Ordejón, P., & Canadell, E. (2001). Experimental and theoretical study of band structure of InSe andIn1−xGaxSe(x3.0.co;2-2Rinco´n, C. (1992). Order-disorder transition in ternary chalcopyrite compounds and pseudobinary alloys. Physical Review B, 45(22), 12716-12719. doi:10.1103/physrevb.45.12716Manjón, F. J., Gomis, O., Vilaplana, R., Sans, J. A., & Ortiz, H. M. (2013). Order-disorder processes in adamantine ternary ordered-vacancy compounds. physica status solidi (b), 250(8), 1496-1504. doi:10.1002/pssb.201248596Cohen, M. L., & Bergstresser, T. K. (1966). Band Structures and Pseudopotential Form Factors for Fourteen Semiconductors of the Diamond and Zinc-blende Structures. Physical Review, 141(2), 789-796. doi:10.1103/physrev.141.789Reimann, K., Haselhoff, M., Rübenacke, S., & Steube, M. (1996). Determination of the Pressure Dependence of Band-Structure Parameters by Two-Photon Spectroscopy. physica status solidi (b), 198(1), 71-80. doi:10.1002/pssb.2221980110Wei, S.-H., & Zunger, A. (1999). Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends. Physical Review B, 60(8), 5404-5411. doi:10.1103/physrevb.60.5404González, J., & Rincón, C. (1989). Optical absorption and phase transitions in CuInSe2and CuInS2single crystals at high pressure. Journal of Applied Physics, 65(5), 2031-2034. doi:10.1063/1.342897Wei, S.-H., Ferreira, L. G., & Zunger, A. (1992). First-principles calculation of the order-disorder transition in chalcopyrite semiconductors. Physical Review B, 45(5), 2533-2536. doi:10.1103/physrevb.45.2533Lempert, R. J., Hass, K. C., & Ehrenreich, H. (1987). Molecular coherent-potential approximation for zinc-blende pseudobinary alloys. Physical Review B, 36(2), 1111-1129. doi:10.1103/physrevb.36.1111Wei, S. ‐H., & Zunger, A. (1990). Band‐gap narrowing in ordered and disordered semiconductor alloys. Applied Physics Letters, 56(7), 662-664. doi:10.1063/1.103307Iota, V., & Weinstein, B. A. (1999). Pitfalls of Using Pressure to Assign the Luminescence of Large-Lattice-Relaxation Defects. physica status solidi (b), 211(1), 91-104. doi:10.1002/(sici)1521-3951(199901)211:13.0.co;2-mHong, R.-D., Jenkins, D. W., Ren, S. Y., & Dow, J. D. (1988). Hydrostatic-pressure dependencies of deep impurity levels in zinc-blende semiconductors. Physical Review B, 38(17), 12549-12555. doi:10.1103/physrevb.38.1254

    Refractive index determination in diamond anvil cells: Results for argon

    No full text
    International audienceThe pressure dependence of the refractive index of argon has been measured in a diamond anvil cell up to 15 GPa. We describe in detail the novel technique used, which offers considerably higher accuracy than the others previously utilized. Our results on Ar agree with previous results at lower pressures and are compared with theoretical calculations at high pressure

    Extended and accurate determination of the melting curves of argon, helium, ice (H2O), and hydrogen (H2)

    No full text
    International audienceThe melting curves of argon, helium 4, ice (H 2 O), and hydrogen (H 2) have been measured from room temperature up to a maximum temperature of 750 K. This extends the previous determination of the melting lines of H 2 and He by nearly a factor of 2 in pressure. The experiments were carried out with a resistively heated diamond anvil cell. Improved accuracy with respect to previous determinations, when existing, was achieved by the use of an optical metrology which gives an in situ measurement of both the pressure and temperature of the sample. The melting lines of argon and H 2 O are found to be well represented by the following Simon-Glatzel equations: Pϭ2.172ϫ10 Ϫ4 T 1.556 Ϫ0.21 ͑argon͒ and Pϭ2.17ϩ1.253͓(T/354.8) 3.0 Ϫ1͔ (H 2 O). But the Simon-Glatzel form was found inadequate to reproduce the melting data of 4 He and H 2 over the whole temperature range. In the case of 4 He, this deviation from a Simon law is explained by the softening of the pair interaction with density. A Kechin equation is proposed for H 2 : Tϭ14.025(1 ϩ P/0.0286) 0.589 exp(Ϫ4.6ϫ10 Ϫ3 P). This form is in excellent agreement with all published experimental data for H 2 and interestingly predicts a maximum on the melting curve at 128 GPa and 1100 K

    Disparités géographiques de la mortalité par SIDA en France

    No full text
    Geographical Disparities of Aids Mortality in France. Geographical distribution of Aids mortality in France has been studied on the basis of the national cause-of-death statistics period 1983-1989. Aids mortality is very unequally distributed with two regions particularly affected (Paris region and paca) and, inside these regions, two areas which stand out with especially high death rates : the inner Paris and the department of Alpes-Maritimes. In these two departments, which accounted for 35 % of all Aids mortality in 1988, one death out of four was caused by Aids among men aged 25-44 years. The dramatic increase of Aids mortality in the period 1985-1986 has affected many regions but the trend since 1987 has varied between regions. Socio- demographic characteristics of deaths varied between region.La répartition géographique des décès par Sida en France a été étudiée en se basant sur l'analyse des statistiques nationales de décès de 1983 à 1989. La répartition des décès apparaît très inégale avec deux régions extrêmement touchées (Ile-de-France et région paca) et, au sein même de ces régions, deux départements particulièrement atteints : Paris et les Alpes-Maritimes. Dans ces deux départements, qui représentaient 35 % du total des décès par Sida en 1988, un décès sur quatre était dû au Sida chez les hommes entre 25 et 44 ans. La progression des décès selon les régions n'a pas été uniforme entre 1983 et 1989. Les caractéristiques socio-économiques des décédés varient selon les zones.Jougla Eric, Hatton Françoise, Letoullec Alain, Michel Eliane. Disparités géographiques de la mortalité par SIDA en France. In: Espace, populations, sociétés, 1990-3. Les inégalités géographiques de la mortalité (I) - The Geographical Inequalities of Mortality (I) pp. 533-540
    corecore