309 research outputs found

    Surface and electronic structure of MOCVD-grown Ga(0.92)In(0.08)N investigated by UV and X-ray photoelectron spectroscopies

    Full text link
    The surface and electronic structure of MOCVD-grown layers of Ga(0.92)In(0.08)N have been investigated by means of photoemission. An additional feature at the valence band edge, which can be ascribed to the presence of In in the layer, has been revealed. A clean (0001)-(1x1) surface was prepared by argon ion sputtering and annealing. Stability of chemical composition of the investigated surface subjected to similar ion etching was proven by means of X-ray photoemission spectroscopy.Comment: 13 pages, 6 figure

    Comparative investigation of NbN and Nb–Si–N films: experiment and theory

    No full text
    NbN and Nb–Si–N films have been deposited by magnetron sputtering of the Nb and Si targets on silicon wafers at various powers supplied to the Nb target. The films have been investigated by an atomic force microscope, X-ray diffraction, X-ray photoelectron spectroscopy, nanoindentaion and microindentation. The NbN films were nanostructured, and the Nb–Si–N films represented an aggregation of δ-NbNx nanocrystallites embedded into the amorphous CSi₃N₄ matrix (nc-δ-NbNx/a-CSi₃N₄). The annealing of the films in vacuum showed that their intensive oxidation occurred at annealing temperature higher than 600 °C. To explain the experimental results on the Nb–Si–N films, first-principles molecular dynamics simulations of the NbN(001)/CSi₃N₄ heterostructures have been carried out.NbN і Nb–Si–N плівки осаджували на кремнієві пластини методом магнетронного розпилення мішеней Nb і Si при різних потужностях розряду на мішені із Nb. Плівки були досліджені за допомогою атомно-силового мікроскопа, дифракції рентгенівських променів, рентгенівської фотоелектронної спектроскопії, нано- і мікроіндентування. NbN плівки були наноструктуровані, тоді як Nb–Si–N плівки являли агрегацію δ-NbNx нанокристалітів, вкраплених в аморфну CSi₃N₄ матрицю (nc-δ-NbNx/ a-CSi₃N₄). Відпал плівок у вакуумі показав, що їх інтенсивне окислення відбувається при температурі вищій, ніж 600 °C. Для пояснення експериментальних результатів по Nb–Si–N плівках проведено моделювання NbN (001)/CSi₃N₄ гетероструктури із перших принципів в рамках молекулярної динаміки.NbN и Nb–Si–N пленки осаждали на кремниевые пластины методом магнетронного распыления мишеней Nb и Si при различных мощностях разряда на мишени с Nb. Пленки были исследованы с помощью атомно-силового микроскопа, дифракции рентгеновских лучей, рентгеновской фотоэлектронной спектроскопии, нано- и микроиндентирования. NbN пленки были наноструктурированные, тогда как Nb–Si–N пленки представляли агрегацию δ-NbNx нанокристаллитов, вкрапленных в аморфную CSi₃N₄ матрицу (nc-δ-NbNx/a-CSi₃N₄). Отжиг пленок в вакууме показал, что их интенсивное окисление происходит при температуре выше, чем 600 °C. Для объяснения экспериментальных результатов по Nb–Si–N пленках проведено моделирование NbN (001)/CSi₃N₄ гетероструктуры из первых принципов в рамках молекулярной динамики.This work was partially supported by STCU Contract No. 5539. The authors are grateful to Dr. Timofejeva, I. I. and Dr. Dub, S. N. for XRD investigations and nanoindentation of the films. The authors are grateful to the directorate of the Summery Institute at Jackson State University for financial support and the possibility to perform large-scale calculations

    Accurate calculation of polarization-related quantities in semiconductors

    Full text link
    We demonstrate that polarization-related quantities in semiconductors can be predicted accurately from first-principles calculations using the appropriate approach to the problem, the Berry-phase polarization theory. For III-V nitrides, our test case, we find polarizations, polarization differences between nitride pairs, and piezoelectric constants quite close to their previously established values. Refined data are nevertheless provided for all the relevant quantities.Comment: RevTeX 4 pages, no figure

    First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: comparison of local and gradient-corrected density-functional theory

    Get PDF
    A number of diverse bulk properties of the zincblende and wurtzite III-V nitrides AlN, GaN, and InN, are predicted from first principles within density functional theory using the plane-wave ultrasoft pseudopotential method, within both the LDA (local density) and GGA (generalized gradient) approximations to the exchange-correlation functional. Besides structure and cohesion, we study formation enthalpies (a key ingredient in predicting defect solubilities and surface stability), spontaneous polarizations and piezoelectric constants (central parameters for nanostructure modeling), and elastic constants. Our study bears out the relative merits of the two density functional approaches in describing diverse properties of the III-V nitrides (and of the parent species N2_2, Al, Ga, and In), and leads us to conclude that the GGA approximation, associated with high-accuracy techniques such as multiprojector ultrasoft pseudopotentials or modern all-electron methods, is to be preferred in the study of III-V nitrides.Comment: RevTeX 6 pages, 12 tables, 0 figure

    Avaliação à medida no Segundo HAREM

    Get PDF
    Objectives This study compared the efficacy and safety of subcutaneous (SC) versus intravenous (IV) formulations of tocilizumab in patients with rheumatoid arthritis with an inadequate response to disease-modifying antirheumatic drugs (DMARD). Methods Patients (n=1262) were randomly assigned to receive tocilizumab-SC 162mg weekly+placebo-IV every 4weeks or tocilizumab-IV 8mg/kg every 4weeks+placebo-SC weekly in combination with traditional DMARD. The primary outcome was to demonstrate the non-inferiority of tocilizumab-SC to tocilizumab-IV with regard to the proportion of patients in each group achieving an American College of Rheumatology (ACR) 20 response at week 24 using a 12% non-inferiority margin (NIM). Secondary outcomes were disease activity score using 28 joints (DAS28), ACR responses, health assessment questionnaire scores and safety assessments. Results At week 24, 69.4% (95% CI 65.5 to 73.2) of tocilizumab-SC-treated patients versus 73.4% (95% CI 69.6 to 77.1) of tocilizumab-IV-treated patients achieved an ACR20 response (weighted difference between groups -4.0%, 95% CI -9.2 to 1.2); the 12% NIM was met. ACR50/70 responses, DAS28 and physical function improvements were comparable between the tocilizumab-SC and tocilizumab-IV groups. The safety profiles of tocilizumab-SC and tocilizumab-IV were similar, and the most common adverse event was infection. Injection-site reactions (ISR) occurred more frequently in the tocilizumab-SC group than in the tocilizumab-IV (placebo-SC) group. No anaphylaxis was reported over the 24weeks. Conclusions Tocilizumab-SC 162mg weekly demonstrated comparable efficacy to tocilizumab-IV 8mg/kg. The safety profile of tocilizumab-SC is consistent with the known and well-established safety profile of tocilizumab-IV, with the exception of a higher incidence of ISR, which were more common with tocilizumab-SC administration

    The STAR Silicon Strip Detector (SSD)

    Full text link
    The STAR Silicon Strip Detector (SSD) completes the three layers of the Silicon Vertex Tracker (SVT) to make an inner tracking system located inside the Time Projection Chamber (TPC). This additional fourth layer provides two dimensional hit position and energy loss measurements for charged particles, improving the extrapolation of TPC tracks through SVT hits. To match the high multiplicity of central Au+Au collisions at RHIC the double sided silicon strip technology was chosen which makes the SSD a half million channels detector. Dedicated electronics have been designed for both readout and control. Also a novel technique of bonding, the Tape Automated Bonding (TAB), was used to fullfill the large number of bounds to be done. All aspects of the SSD are shortly described here and test performances of produced detection modules as well as simulated results on hit reconstruction are given.Comment: 11 pages, 8 figures, 1 tabl

    Multiplicity distribution and spectra of negatively charged hadrons in Au+Au collisions at sqrt(s_nn) = 130 GeV

    Full text link
    The minimum bias multiplicity distribution and the transverse momentum and pseudorapidity distributions for central collisions have been measured for negative hadrons (h-) in Au+Au interactions at sqrt(s_nn) = 130 GeV. The multiplicity density at midrapidity for the 5% most central interactions is dNh-/deta|_{eta = 0} = 280 +- 1(stat)+- 20(syst), an increase per participant of 38% relative to ppbar collisions at the same energy. The mean transverse momentum is 0.508 +- 0.012 GeV/c and is larger than in central Pb+Pb collisions at lower energies. The scaling of the h- yield per participant is a strong function of pt. The pseudorapidity distribution is almost constant within |eta|<1.Comment: 6 pages, 3 figure

    Feminist geographies of digital work

    Get PDF
    Feminist thought challenges essentialist and normative categorizations of ‘work’. Therefore, feminism provides a critical lens on ‘working space’ as a theoretical and empirical focus for digital geographies. Digital technologies extend and intensify working activity, rendering the boundaries of the workplace emergent. Such emergence heightens the ambivalence of working experience: the possibilities for affirmation and/or negation through work. A digital geography is put forward through feminist theorizations of the ambivalence of intimacy. The emergent properties of working with digital technologies create space through the intimacies of postwork places where bodies and machines feel the possibilities of being ‘at’ work

    Robotics and automation in the city: a research agenda

    Get PDF
    Globally cities are becoming experimental sites for new forms of robotic and automation technologies applied across a wide variety of sectors in multiple areas of economic and social life. As these innovations leave the laboratory and factory, this paper analyses how robotics and automation systems are being layered upon existing urban digital networks, extending the capabilities and capacities of human agency and infrastructure networks, and reshaping the city and citizen’s everyday experiences. To date, most work in this field has been speculative and isolated in nature. We set out a research agenda that goes beyond analysis of discrete applications and effects, to investigate how robotics and automation connect across urban domains and the implications for: differential urban geographies, the selective enhancement of individuals and collective management of infrastructures, the socio-spatial sorting of cities and the potential for responsible urban innovation
    corecore