140 research outputs found
Familiars: representing Facebook users’ social behaviour through a reflective playful experience
In this paper, we describe the design and development of a social game called Familiars. Inspired by the daemons in Pullman’s “Dark Material” trilogy, Familiars are animal companions that sit on your Facebook profile and change into different animal forms based on your social activity within the social network of Facebook.
.
Familiars takes advantage of the powerful capabilities of the developers platform of Facebook to build a multi-dimensional picture of a player’s state based on social activity, facial expression analysis on photographs and suggestions from friends. This rich information is then distilled and presented to the player in the form of animal that the familiar chooses to take.
We show how the types of animals and personalities were associated in a cross-cultural user study, and present quantitative results from the social behaviours of the players within the game in addition to qualitative data gathered from questionnaire responses
Consumerism Meets Agri-Business
The wave of consumerism sweeping the country today appears pretty frightening to many of our farmers and ranchers. Frankly, they\u27re scared of consumerism
Telepresence and the Role of the Senses
The telepresence experience can be evoked in a number of ways. A well-known example is a player of videogames who reports about a telepresence experience, a subjective experience of being in one place or environment, even when physically situated in another place. In this paper we set the phenomenon of telepresence into a theoretical framework. As people react subjectively to stimuli from telepresence, empirical studies can give more evidence about the phenomenon. Thus, our contribution is to bridge the theoretical with the empirical. We discuss theories of perception with an emphasis on Heidegger, Merleau-Ponty and Gibson, the role of the senses and the Spinozian belief procedure. The aim is to contribute to our understanding of this phenomenon. A telepresence-study that included the affordance concept is used to empirically study how players report sense-reactions to virtual sightseeing in two cities. We investigate and explore the interplay of the philosophical and the empirical. The findings indicate that it is not only the visual sense that plays a role in this experience, but all senses
From DTV4ALL to HBB4ALL : Accessibility in European Broadcasting
The European Commission has had an active role in promoting research and development activities in media accessibility. Many projects have been funded in the last decade, and two have been directed to piloting accessibility services for broadcasting. While subtitling has always been identified as the access service par excellence, audio description (AD) has been gaining importance lately. Pilar Orero presents two EU projects, DTV4ALL and HBB4ALL, where media accessibility is the focus. Developments and outcomes in AD are analysed, as well as the possibilities offered for its broadcast from analogue to digital. The last part of the chapter is dedicated to the future of AD in the new media scenario, where the Internet and broadcast converge to offer new hybrid possibilities for production, distribution and interaction
A Cross-Media Presence Questionnaire: The ITC-Sense of Presence Inventory
The presence research community would benefit from a reliable and valid cross-media presence measure that allows results from different laboratories to be compared and a more comprehensive knowledge base to be developed. The ITC-Sense of Presence Inventory (ITC-SOPI) is a new state questionnaire measure whose development has been informed by previous research on the determinants of presence and current self-report measures. It focuses on users' experiences of media, with no reference to objective system parameters. More than 600 people completed the ITC-SOPI following an experience with one of a range of noninteractive and interactive media. Exploratory analysis (principal axis factoring) revealed four factors: Sense of Physical Space, Engagement, Ecological Validity, and Negative Effects. Relations between the factors and the consistency of the factor structure with others reported in the literature are discussed. Preliminary analyses described here demonstrate that the ITC-SOPI is reliable and valid, but more rigorous testing of its psychometric properties and applicability to interactive virtual environments is required. Subject to satisfactory confirmatory analyses, the ITC-SOPI will offer researchers using a range of media systems a tool with which to measure four facets of a media experience that are putatively related to presence
From presence to consciousness through virtual reality
Immersive virtual environments can break the deep, everyday connection between where our senses tell us we are and where we are actually located and whom we are with. The concept of 'presence' refers to the phenomenon of behaving and feeling as if we are in the virtual world created by computer displays. In this article, we argue that presence is worthy of study by neuroscientists, and that it might aid the study of perception and consciousness
The Immersive Audience Experience Evaluation Toolkit
This paper introduces the Immersive Audience Experience Evaluation Toolkit, an online questionnaire designed to measure audience perceptions of impact and value of different immersive experiences. Initially created and developed in 2017, the Toolkit has been applied to various immersive media formats and contents such as virtual reality (VR), augmented reality (AR), mixed reality (MR), games and screen-based media. With examples of insights generated for creators and funders of immersive experiences, this paper summarises the need for, development and refinement of the Toolkit. Drawing from audience evaluations with 460 people using 10 different immersive contents, the added value of the Toolkit to the creative industry of further exploring aggregated and comparative ratings is also discussed
Experiencing the Digital News: The multiple dimensions of users’ experience in news media use
CaveUDK: a VR game engine middleware
Previous attempts at developing immersive versions of game engines have faced difficulties in achieving both overall high performance and preserving reusability of software developments. In this paper, we present a high-level VR middleware based on one of the most successful commercial game engines: the Unreal® Engine 3.0 (UE3). We describe a VR framework implemented as an extension to the Unreal® Development Kit (UDK) supporting CAVE"-like installations. Our approach relies on a distributed architecture reinforced by specific replication patterns to synchronize the user's point of view and interactions within a multi-screen installation. Our performance benchmarks indicated that our immersive port does not affect the game engine performance, even with complex real-time applications, such as fast-paced multiplayer First Person Shooter (FPS) games or high-resolution graphical environments with 2M+ polygons. A user study also demonstrated the capacity of our VR middleware to elicit high spatial presence while maintaining low cybersickness effects. With free distribution, we believe such a platform can support future Entertainment and VR research
A virtual versus an augmented reality cooking task based-tools: a behavioral and physiological study on the assessment of executive functions.
[EN] Virtual reality (VR) and augmented reality (AR) are two novel graphics immersive techniques (GIT) that, in the last decade, have been attracting the attention of many researchers, especially in psychological research. VR can provide 3D real-life synthetic environments in which controllers allow human interaction. AR overlays synthetic elements to the real world and the human gaze to target allow hand gesture to act with synthetic elements. Both techniques are providing more ecologically environments than traditional methods, and most of the previous researches, on one side, have more focused on the use of VR for treatment and assessment showing positive effectiveness results. On the other, AR has been proving for the treatment of specific disorders but there are no studies that investigated the feasibility and effectiveness of augmented reality in the neuropsychological assessment. Starting from these premises, the present study aimed to compare the performance and sense of presence using both techniques during an ecological task, such as cooking.
The study included 50 cognitively healthy subjects. The cooking task consisted of 4 levels that increased in difficulty. As the level increased, additional activities appeared. The order of presentation of each exposure condition (AR and VR) was counterbalanced for each participant. The virtual reality-cooking task has been performed through ¿HTC/VIVE¿ and augmented reality through ¿Microsoft HoloLens¿.¿Furthermore, the study recorded and compared the psychophysiological changes (heart rate and skin conductance response) during the cooking task in both conditions. To measure the sense of presence occurring during the two exposure conditions, subjects completed the SUSQ and the ITC-SOPI immediately after each condition.
The behavioral results showed that times are always lower in VR than in AR, increasing constantly in accordance with the difficulty of the tasks. Regarding physiological responses, the findings showed that AR condition produced more individual excitement and activation than VR. Finally, VR was able to produce higher levels of sense of presence than AR condition.
The overall results support that VR currently represents the GIT with greater usability and feasibility compared to AR, probably due to the differences in the human-computer interaction between the two techniques.Chicchi-Giglioli, IA.; Bermejo Vidal, C.; Alcañiz Raya, ML. (2019). A virtual versus an augmented reality cooking task based-tools: a behavioral and physiological study on the assessment of executive functions. Frontiers in Psychology. 1-12. https://doi.org/10.3389/fpsyg.2019.02529S112Barratt, E. S. (1959). Anxiety and Impulsiveness Related to Psychomotor Efficiency. Perceptual and Motor Skills, 9(3), 191-198. doi:10.2466/pms.1959.9.3.191Bohil, C. J., Alicea, B., & Biocca, F. A. (2011). Virtual reality in neuroscience research and therapy. Nature Reviews Neuroscience, 12(12), 752-762. doi:10.1038/nrn3122Chaytor, N., & Schmitter-Edgecombe, M. (2003). The Ecological Validity of Neuropsychological Tests: A Review of the Literature on Everyday Cognitive Skills. Neuropsychology Review, 13(4), 181-197. doi:10.1023/b:nerv.0000009483.91468.fbCHAYTOR, N., SCHMITTEREDGECOMBE, M., & BURR, R. (2006). Improving the ecological validity of executive functioning assessment. Archives of Clinical Neuropsychology, 21(3), 217-227. doi:10.1016/j.acn.2005.12.002Chicchi Giglioli, I. A., Pallavicini, F., Pedroli, E., Serino, S., & Riva, G. (2015). Augmented Reality: A Brand New Challenge for the Assessment and Treatment of Psychological Disorders. Computational and Mathematical Methods in Medicine, 2015, 1-12. doi:10.1155/2015/862942Cipresso, P., Albani, G., Serino, S., Pedroli, E., Pallavicini, F., Mauro, A., & Riva, G. (2014). Virtual multiple errands test (VMET): a virtual reality-based tool to detect early executive functions deficit in Parkinson’s disease. Frontiers in Behavioral Neuroscience, 8. doi:10.3389/fnbeh.2014.00405Cipresso, P., Giglioli, I. A. C., Raya, M. A., & Riva, G. (2018). The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature. Frontiers in Psychology, 9. doi:10.3389/fpsyg.2018.02086De Leeuw, J. R. (2014). jsPsych: A JavaScript library for creating behavioral experiments in a Web browser. Behavior Research Methods, 47(1), 1-12. doi:10.3758/s13428-014-0458-yIriarte, Y., Diaz-Orueta, U., Cueto, E., Irazustabarrena, P., Banterla, F., & Climent, G. (2012). AULA—Advanced Virtual Reality Tool for the Assessment of Attention. Journal of Attention Disorders, 20(6), 542-568. doi:10.1177/1087054712465335Díaz-Orueta, U., Garcia-López, C., Crespo-Eguílaz, N., Sánchez-Carpintero, R., Climent, G., & Narbona, J. (2013). AULA virtual reality test as an attention measure: Convergent validity with Conners’ Continuous Performance Test. Child Neuropsychology, 20(3), 328-342. doi:10.1080/09297049.2013.792332Dunkin, B., Adrales, G. L., Apelgren, K., & Mellinger, J. D. (2006). Surgical simulation: a current review. Surgical Endoscopy, 21(3), 357-366. doi:10.1007/s00464-006-9072-0Elkind, J. S., Rubin, E., Rosenthal, S., Skoff, B., & Prather, P. (2001). A Simulated Reality Scenario Compared with the Computerized Wisconsin Card Sorting Test: An Analysis of Preliminary Results. CyberPsychology & Behavior, 4(4), 489-496. doi:10.1089/109493101750527042Fillmore, M. T., Rush, C. R., & Hays, L. (2006). Acute effects of cocaine in two models of inhibitory control: implications of non-linear dose effects. Addiction, 101(9), 1323-1332. doi:10.1111/j.1360-0443.2006.01522.xFleming, T. M., Bavin, L., Stasiak, K., Hermansson-Webb, E., Merry, S. N., Cheek, C., … Hetrick, S. (2017). Serious Games and Gamification for Mental Health: Current Status and Promising Directions. Frontiers in Psychiatry, 7. doi:10.3389/fpsyt.2016.00215Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). «Mini-mental state». Journal of Psychiatric Research, 12(3), 189-198. doi:10.1016/0022-3956(75)90026-6Freeman, D., Reeve, S., Robinson, A., Ehlers, A., Clark, D., Spanlang, B., & Slater, M. (2017). Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychological Medicine, 47(14), 2393-2400. doi:10.1017/s003329171700040xGermine, L., Nakayama, K., Duchaine, B. C., Chabris, C. F., Chatterjee, G., & Wilmer, J. B. (2012). Is the Web as good as the lab? Comparable performance from Web and lab in cognitive/perceptual experiments. Psychonomic Bulletin & Review, 19(5), 847-857. doi:10.3758/s13423-012-0296-9Germine, L., Reinecke, K., & Chaytor, N. S. (2019). Digital neuropsychology: Challenges and opportunities at the intersection of science and software. The Clinical Neuropsychologist, 33(2), 271-286. doi:10.1080/13854046.2018.1535662Gregg, L., & Tarrier, N. (2007). Virtual reality in mental health. Social Psychiatry and Psychiatric Epidemiology, 42(5), 343-354. doi:10.1007/s00127-007-0173-4Henry, M., Joyal, C. C., & Nolin, P. (2012). Development and initial assessment of a new paradigm for assessing cognitive and motor inhibition: The bimodal virtual-reality Stroop. Journal of Neuroscience Methods, 210(2), 125-131. doi:10.1016/j.jneumeth.2012.07.025Jensen, L., & Konradsen, F. (2017). A review of the use of virtual reality head-mounted displays in education and training. Education and Information Technologies, 23(4), 1515-1529. doi:10.1007/s10639-017-9676-0Juan, M. C., & Pérez, D. (2010). Using augmented and virtual reality for the development of acrophobic scenarios. Comparison of the levels of presence and anxiety. Computers & Graphics, 34(6), 756-766. doi:10.1016/j.cag.2010.08.001Khademi, M., Hondori, H. M., Dodakian, L., Cramer, S., & Lopes, C. V. (2013). Comparing “pick and place” task in spatial Augmented Reality versus non-immersive Virtual Reality for rehabilitation setting. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2013.6610575Krichenbauer, M., Yamamoto, G., Taketom, T., Sandor, C., & Kato, H. (2018). Augmented Reality versus Virtual Reality for 3D Object Manipulation. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1038-1048. doi:10.1109/tvcg.2017.2658570Ku, J., Cho, W., Kim, J.-J., Peled, A., Wiederhold, B. K., Wiederhold, M. D., … Kim, S. I. (2003). A Virtual Environment for Investigating Schizophrenic Patients’ Characteristics: Assessment of Cognitive and Navigation Ability. CyberPsychology & Behavior, 6(4), 397-404. doi:10.1089/109493103322278781Lessiter, J., Freeman, J., Keogh, E., & Davidoff, J. (2001). A Cross-Media Presence Questionnaire: The ITC-Sense of Presence Inventory. Presence: Teleoperators and Virtual Environments, 10(3), 282-297. doi:10.1162/105474601300343612Martin, M. M., & Rubin, R. B. (1995). A New Measure of Cognitive Flexibility. Psychological Reports, 76(2), 623-626. doi:10.2466/pr0.1995.76.2.623McMahan, R. P., Alon, A. J. D., Lazem, S., Beaton, R. J., Machaj, D., Schaefer, M., … Bowman, D. A. (2010). Evaluating natural interaction techniques in video games. 2010 IEEE Symposium on 3D User Interfaces (3DUI). doi:10.1109/3dui.2010.5444727McMahan, R. P., Bowman, D. A., Zielinski, D. J., & Brady, R. B. (2012). Evaluating Display Fidelity and Interaction Fidelity in a Virtual Reality Game. IEEE Transactions on Visualization and Computer Graphics, 18(4), 626-633. doi:10.1109/tvcg.2012.43Miller, M. A., & Fillmore, M. T. (2010). The effect of image complexity on attentional bias towards alcohol-related images in adult drinkers. Addiction, 105(5), 883-890. doi:10.1111/j.1360-0443.2009.02860.xNeguț, A., Matu, S.-A., Sava, F. A., & David, D. (2016). Virtual reality measures in neuropsychological assessment: a meta-analytic review. The Clinical Neuropsychologist, 30(2), 165-184. doi:10.1080/13854046.2016.1144793Martínez-Loredo, V., Fernández-Hermida, J. R., Fernández-Artamendi, S., Carballo, J. L., & García-Rodríguez, O. (2015). Spanish adaptation and validation of the Barratt Impulsiveness Scale for early adolescents (BIS-11-A). International Journal of Clinical and Health Psychology, 15(3), 274-282. doi:10.1016/j.ijchp.2015.07.002Parsons, T. D. (2015). Virtual Reality for Enhanced Ecological Validity and Experimental Control in the Clinical, Affective and Social Neurosciences. Frontiers in Human Neuroscience, 9. doi:10.3389/fnhum.2015.00660Ming-Zher Poh, Swenson, N. C., & Picard, R. W. (2010). A Wearable Sensor for Unobtrusive, Long-Term Assessment of Electrodermal Activity. IEEE Transactions on Biomedical Engineering, 57(5), 1243-1252. doi:10.1109/tbme.2009.2038487PUGNETTI, L., MENDOZZI, L., ATTREE, E. A., BARBIERI, E., BROOKS, B. M., CAZZULLO, C. L., … Psychol, C. (1998). Probing Memory and Executive Functions with Virtual Reality: Past and Present Studies. CyberPsychology & Behavior, 1(2), 151-161. doi:10.1089/cpb.1998.1.151Ragan, E. D. (2010). The Effects of Higher Levels of Immersion on Procedure Memorization Performance and Implications for Educational Virtual Environments. Presence: Teleoperators and Virtual Environments, 19(6), 527-543. doi:10.1162/pres_a_00016Ragan, E. D., Kopper, R., Schuchardt, P., & Bowman, D. A. (2013). Studying the Effects of Stereo, Head Tracking, and Field of Regard on a Small-Scale Spatial Judgment Task. IEEE Transactions on Visualization and Computer Graphics, 19(5), 886-896. doi:10.1109/tvcg.2012.163Rand, D., Katz, N., & (Tamar) Weiss, P. L. (2007). Evaluation of virtual shopping in the VMall: Comparison of post-stroke participants to healthy control groups. Disability and Rehabilitation, 29(22), 1710-1719. doi:10.1080/09638280601107450Rand, D., Rukan, S. B.-A., (Tamar) Weiss, P. L., & Katz, N. (2009). Validation of the Virtual MET as an assessment tool for executive functions. Neuropsychological Rehabilitation, 19(4), 583-602. doi:10.1080/09602010802469074Reimers, S., & Stewart, N. (2014). Presentation and response timing accuracy in Adobe Flash and HTML5/JavaScript Web experiments. Behavior Research Methods, 47(2), 309-327. doi:10.3758/s13428-014-0471-1Rizzo, A. A., Buckwalter, J. G., Bowerly, T., Van Der Zaag, C., Humphrey, L., Neumann, U., … Sisemore, D. (2000). The Virtual Classroom: A Virtual Reality Environment for the Assessment and Rehabilitation of Attention Deficits. CyberPsychology & Behavior, 3(3), 483-499. doi:10.1089/10949310050078940Rizzo, A. A., Schultheis, M., Kerns, K. A., & Mateer, C. (2004). Analysis of assets for virtual reality applications in neuropsychology. Neuropsychological Rehabilitation, 14(1-2), 207-239. doi:10.1080/09602010343000183Rizzo, A. A., Bowerly, T., Buckwalter, J. G., Klimchuk, D., Mitura, R., & Parsons, T. D. (2009). A Virtual Reality Scenario for All Seasons:The Virtual Classroom. CNS Spectrums, 11(1), 35-44. doi:10.1017/s1092852900024196Saposnik, G., Mamdani, M., Bayley, M., Thorpe, K. E., Hall, J., Cohen, L. G., & Teasell, R. (2010). Effectiveness of Virtual Reality Exercises in STrokeRehabilitation(EVREST): Rationale, Design, and Protocol of a Pilot Randomized Clinical Trial Assessing the Wii Gaming System. International Journal of Stroke, 5(1), 47-51. doi:10.1111/j.1747-4949.2009.00404.xSeymour, N. E. (2007). VR to OR: A Review of the Evidence that Virtual Reality Simulation Improves Operating Room Performance. World Journal of Surgery, 32(2), 182-188. doi:10.1007/s00268-007-9307-9Sequeira, H., Hot, P., Silvert, L., & Delplanque, S. (2009). Electrical autonomic correlates of emotion. International Journal of Psychophysiology, 71(1), 50-56. doi:10.1016/j.ijpsycho.2008.07.009Slater, M. (2009). Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1535), 3549-3557. doi:10.1098/rstb.2009.0138Slater, M., & Steed, A. (2000). A Virtual Presence Counter. Presence: Teleoperators and Virtual Environments, 9(5), 413-434. doi:10.1162/105474600566925Suso-Ribera, C., Fernández-Álvarez, J., García-Palacios, A., Hoffman, H. G., Bretón-López, J., Baños, R. M., … Botella, C. (2019). Virtual Reality, Augmented Reality, and In Vivo Exposure Therapy: A Preliminary Comparison of Treatment Efficacy in Small Animal Phobia. Cyberpsychology, Behavior, and Social Networking, 22(1), 31-38. doi:10.1089/cyber.2017.0672Valmaggia, L. R., Latif, L., Kempton, M. J., & Rus-Calafell, M. (2016). Virtual reality in the psychological treatment for mental health problems: An systematic review of recent evidence. Psychiatry Research, 236, 189-195. doi:10.1016/j.psychres.2016.01.01
- …
