136 research outputs found

    Non-disjunction of chromosome 13

    Get PDF
    We performed a molecular study with 21 microsatellites on a sample of 82 trisomy 13 conceptuses, the largest number of cases studied to date. The parental origin was determined in every case and in 89% the extra chromosome 13 was of maternal origin with an almost equal number of maternal MI and MII errors. The latter finding is unique among human autosomal trisomies, where maternal MI (trisomies 15, 16, 21, 22) or MII (trisomy 18) errors dominate. Of the nine paternally derived cases five were of MII origin but none arose from MI errors. There was some evidence for elevated maternal age in cases with maternal meiotic origin for liveborn infants. Maternal and paternal ages were elevated in cases with paternal meiotic origin. This is in contrast to results from a similar study of non-disjunction of trisomy 21 where paternal but not maternal age was elevated. We find clear evidence for reduced recombination in both maternal MI and MII errors and the former is associated with a significant number of tetrads (33%) that are nullichiasmate, which do not appear to be a feature of normal chromosome 13 meiosis. This study supports the evidence for subtle chromosome-specific influences on the mechanisms that determine non-disjunction of human chromosomes, consistent with the diversity of findings for other trisomie

    Redefinition of the map position and validation of a major quantitative trait locus for fire blight resistance of the pear cultivar ‘Harrow Sweet’ (Pyrus communis L.)

    Get PDF
    In a previous study, a QTL analysis was conducted on a pear F1 progeny derived from a cross ‘Passe Crassane’ (PC) × ‘Harrow Sweet’ (HS). Four genomic regions associated with fire blight resistance were identified, including two main QTL located on linkage groups (LGs), 2A and 4 of ‘Harrow Sweet’ (HS02A and HS04). In the present study, we report the combination of LGs HS02A and HS02B into a single LG by mapping additional SSR loci from Malus or Pyrus spp. We could thereby precisely identify a single major QTL on LG HS02. We also confirm a putative QTL on LG HS04 by including new SSR markers to the pre-existing LG HS04. Based on SSR marker analysis of ‘Harrow Sweet’ pedigree, the major HS02 QTL is presumed to originate from the cultivar ‘Early Sweet’, while the HS04 QTL was traced from ‘Harrow Sweet’ back to ‘Bartlett’. We also describe the validation of the major HS02 QTL for the fire blight severity trait in a second F1 progeny derived from a cross ‘Angelys’ × ‘Harrow Sweet’

    Effects of eight neuropsychiatric copy number variants on human brain structure

    Get PDF

    CNS involvement in OFD1 syndrome: A clinical, molecular, and neuroimaging study

    Get PDF

    Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments.

    Get PDF
    International audienceSHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice

    Mechanism of KMT5B haploinsufficiency in neurodevelopment in humans and mice.

    Get PDF
    Pathogenic variants in KMT5B, a lysine methyltransferase, are associated with global developmental delay, macrocephaly, autism, and congenital anomalies (OMIM# 617788). Given the relatively recent discovery of this disorder, it has not been fully characterized. Deep phenotyping of the largest (n = 43) patient cohort to date identified that hypotonia and congenital heart defects are prominent features that were previously not associated with this syndrome. Both missense variants and putative loss-of-function variants resulted in slow growth in patient-derived cell lines. KMT5B homozygous knockout mice were smaller in size than their wild-type littermates but did not have significantly smaller brains, suggesting relative macrocephaly, also noted as a prominent clinical feature. RNA sequencing of patient lymphoblasts and Kmt5b haploinsufficient mouse brains identified differentially expressed pathways associated with nervous system development and function including axon guidance signaling. Overall, we identified additional pathogenic variants and clinical features in KMT5B-related neurodevelopmental disorder and provide insights into the molecular mechanisms of the disorder using multiple model systems

    Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes

    Get PDF
    Copy number variants (CNVs) are major contributors to genomic imbalance disorders. Phenotyping of 137 unrelated deletion and reciprocal duplication carriers of the distal 16p11.2 220 kb BP2-BP3 interval showed that these rearrangements are associated with autism spectrum disorders and mirror phenotypes of obesity/underweight and macrocephaly/microcephaly. Such phenotypes were previously associated with rearrangements of the non-overlapping proximal 16p11.2 600 kb BP4-BP5 interval. These two CNV-prone regions at 16p11.2 are reciprocally engaged in complex chromatin looping, as successfully confirmed by 4C-seq, fluorescence in situ hybridization and Hi-C, as well as coordinated expression and regulation of encompassed genes. We observed that genes differentially expressed in 16p11.2 BP4-BP5 CNV carriers are concomitantly modified in their chromatin interactions, suggesting that disruption of chromatin interplays could participate in the observed phenotypes. We also identified cis- and trans-acting chromatin contacts to other genomic regions previously associated with analogous phenotypes. For example, we uncovered that individuals with reciprocal rearrangements of the trans-contacted 2p15 locus similarly display mirror phenotypes on head circumference and weight. Our results indicate that chromosomal contacts’ maps could uncover functionally and clinically related genes.Molecular Psychiatry advance online publication, 31 May 2016; doi:10.1038/mp.2016.84
    corecore