184 research outputs found

    Computational Identification of Four Spliceosomal snRNAs from the Deep-Branching Eukaryote Giardia intestinalis

    Get PDF
    Funding: Marsden Fund New Zealand Allan Wilson Centre The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.RNAs processing other RNAs is very general in eukaryotes, but is not clear to what extent it is ancestral to eukaryotes. Here we focus on pre-mRNA splicing, one of the most important RNA-processing mechanisms in eukaryotes. In most eukaryotes splicing is predominantly catalysed by the major spliceosome complex, which consists of five uridine-rich small nuclear RNAs (U-snRNAs) and over 200 proteins in humans. Three major spliceosomal introns have been found experimentally in Giardia; one Giardia U-snRNA (U5) and a number of spliceosomal proteins have also been identified. However, because of the low sequence similarity between the Giardia ncRNAs and those of other eukaryotes, the other U-snRNAs of Giardia had not been found. Using two computational methods, candidates for Giardia U1, U2, U4 and U6 snRNAs were identified in this study and shown by RT-PCR to be expressed. We found that identifying a U2 candidate helped identify U6 and U4 based on interactions between them. Secondary structural modelling of the Giardia U-snRNA candidates revealed typical features of eukaryotic U-snRNAs. We demonstrate a successful approach to combine computational and experimental methods to identify expected ncRNAs in a highly divergent protist genome. Our findings reinforce the conclusion that spliceosomal small-nuclear RNAs existed in the last common ancestor of eukaryotes

    RNase MRP and the RNA processing cascade in the eukaryotic ancestor

    Get PDF
    BACKGROUND: Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor. RESULTS: We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution. CONCLUSION: We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches

    Lower protein-to-carbohydrate ratio in maternal diet is associated with higher childhood systolic blood pressure up to age four years

    Full text link
    The prenatal environment can influence development of offspring blood pressure (BP), which tracks into adulthood. This prospective longitudinal study investigated whether maternal pregnancy dietary intake is associated with the development of child BP up to age four years. Data are from 129 mother-child dyads enrolled in the Women and Their Children\u27s Health study. Maternal diet was assessed using a validated 74-item food frequency questionnaire at 18 to 24 weeks and 36 to 40 weeks, with a reference period of the previous three months. Child systolic and diastolic BP were measured at 3, 6, 9, 12, 24, 36 and 48 months, using an automated BP monitor. Using mixed-model regression analyses adjusted for childhood growth indices, pregnancy intakes of percentage of energy (E%) polyunsaturated fat (β coefficient 0.73; 95% CI 0.003, 1.45; p = 0.045), E% omega-6 fatty acids (β coefficient 0.89; 95% CI 0.09, 1.69; p = 0.03) and protein-to-carbohydrate (P:C) ratio (β coefficient -14.14; 95% CI -27.68, -0.60; p = 0.04) were associated with child systolic BP trajectory up to 4 years. Child systolic BP was greatest at low proportions of dietary protein (<16% of energy) and high carbohydrate (>40% of energy) intakes. There may be an ideal maternal macronutrient ratio associated with optimal infant BP. Maternal diet, which is potentially modifiable, may play an important role in influencing offspring risk of future hypertension

    RNase MRP and the RNA processing cascade in the eukaryotic ancestor

    Get PDF
    Background Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. A simple example is the RNase MRP processing of ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simplified network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, named here as the Eukaryotic Ancestor. Results We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches have uncovered previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of new and previously discovered RNase MRP RNAs along with analysis of the primary substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution. Conclusions We conclude that RNase MRP can now be placed in the RNA-processing cascade present in the Eukaryotic Ancestor. This highlights the complexity of RNAprocessing in early eukaryotes

    High Throughput Genome-Wide Survey of Small RNAs from the Parasitic Protists Giardia intestinalis and Trichomonas vaginalis

    Get PDF
    RNA interference (RNAi) is a set of mechanisms which regulate gene expression in eukaryotes. Key elements of RNAi are small sense and antisense RNAs from 19 to 26 nt generated from double-stranded RNAs. MicroRNAs (miRNAs) are a major type of RNAi-associated small RNAs and are found in most eukaryotes studied to date. To investigate whether small RNAs associated with RNAi appear to be present in all eukaryotic lineages, and therefore present in the ancestral eukaryote, we studied two deep-branching protozoan parasites, Giardia intestinalis and Trichomonas vaginalis. Little is known about endogenous small RNAs involved in RNAi of these organisms. Using Illumina Solexa sequencing and genome-wide analysis of small RNAs from these distantly related deep-branching eukaryotes, we identified 10 strong miRNA candidates from Giardia and 11 from Trichomonas. We also found evidence of Giardia short-interfering RNAs potentially involved in the expression of variant-specific surface proteins. In addition, eight new small nucleolar RNAs from Trichomonas are identified. Our results indicate that miRNAs are likely to be general in ancestral eukaryotes and therefore are likely to be a universal feature of eukaryotes

    H1N1 2009 Pandemic Influenza Virus: Resistance of the I223R Neuraminidase Mutant Explained by Kinetic and Structural Analysis

    Get PDF
    Two classes of antiviral drugs, neuraminidase inhibitors and adamantanes, are approved for prophylaxis and therapy against influenza virus infections. A major concern is that antiviral resistant viruses emerge and spread in the human population. The 2009 pandemic H1N1 virus is already resistant to adamantanes. Recently, a novel neuraminidase inhibitor resistance mutation I223R was identified in the neuraminidase of this subtype. To understand the resistance mechanism of this mutation, the enzymatic properties of the I223R mutant, together with the most frequently observed resistance mutation, H275Y, and the double mutant I223R/H275Y were compared. Relative to wild type, KMvalues for MUNANA increased only 2-fold for the single I223R mutant and up to 8-fold for the double mutant. Oseltamivir inhibition constants (KI) increased 48-fold in the single I223R mutant and 7500-fold in the double mutant. In both cases the change was largely accounted for by an increased dissociation rate constant for oseltamivir, but the inhibition constants for zanamivir were less increased. We have used X-ray crystallography to better understand the effect of mutation I223R on drug binding. We find that there is shrinkage of a hydrophobic pocket in the active site as a result of the I223R change. Furthermore, R223 interacts with S247 which changes the rotamer it adopts and, consequently, binding of the pentoxyl substituent of oseltamivir is not as favorable as in the wild type. However, the polar glycerol substituent present in zanamivir, which mimics the natural substrate, is accommodate

    Structures of complexes formed by H5 influenza hemagglutinin with a potent broadly neutralizing human monoclonal antibody.

    Get PDF
    H5N1 avian influenza viruses remain a threat to public health mainly because they can cause severe infections in humans. These viruses are widespread in birds, and they vary in antigenicity forming three major clades and numerous antigenic variants. The most important features of the human monoclonal antibody FLD194 studied here are its broad specificity for all major clades of H5 influenza HAs, its high affinity, and its ability to block virus infection, in vitro and in vivo. As a consequence, this antibody may be suitable for anti-H5 therapy and as a component of stockpiles, together with other antiviral agents, for health authorities to use if an appropriate vaccine was not available. Our mutation and structural analyses indicate that the antibody recognizes a relatively conserved site near the membrane distal tip of HA, near to, but distinct from, the receptor-binding site. Our analyses also suggest that the mechanism of infectivity neutralization involves prevention of receptor recognition as a result of steric hindrance by the Fc part of the antibody. Structural analyses by EM indicate that three Fab fragments are bound to each HA trimer. The structure revealed by X-ray crystallography is of an HA monomer bound by one Fab. The monomer has some similarities to HA in the fusion pH conformation, and the monomer's formation, which results from the presence of isopropanol in the crystallization solvent, contributes to considerations of the process of change in conformation required for membrane fusion

    Combined experimental and computational approach to identify non-protein-coding RNAs in the deep-branching eukaryote Giardia intestinalis

    Get PDF
    Non-protein-coding RNAs represent a large proportion of transcribed sequences in eukaryotes. These RNAs often function in large RNA–protein complexes, which are catalysts in various RNA-processing pathways. As RNA processing has become an increasingly important area of research, numerous non-messenger RNAs have been uncovered in all the model eukaryotic organisms. However, knowledge on RNA processing in deep-branching eukaryotes is still limited. This study focuses on the identification of non-protein-coding RNAs from the diplomonad parasite Giardia intestinalis, showing that a combined experimental and computational search strategy is a fast method of screening reduced or compact genomes. The analysis of our Giardia cDNA library has uncovered 31 novel candidates, including C/D-box and H/ACA box snoRNAs, as well as an unusual transcript of RNase P, and double-stranded RNAs. Subsequent computational analysis has revealed additional putative C/D-box snoRNAs. Our results will lead towards a future understanding of RNA metabolism in the deep-branching eukaryote Giardia, as more ncRNAs are characterized

    Characterization of RNase MRP RNA and novel snoRNAs from Giardia intestinalis and Trichomonas vaginalis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eukaryotic cells possess a complex network of RNA machineries which function in RNA-processing and cellular regulation which includes transcription, translation, silencing, editing and epigenetic control. Studies of model organisms have shown that many ncRNAs of the RNA-infrastructure are highly conserved, but little is known from non-model protists. In this study we have conducted a genome-scale survey of medium-length ncRNAs from the protozoan parasites <it>Giardia intestinalis </it>and <it>Trichomonas vaginalis</it>.</p> <p>Results</p> <p>We have identified the previously 'missing' <it>Giardia </it>RNase MRP RNA, which is a key ribozyme involved in pre-rRNA processing. We have also uncovered 18 new H/ACA box snoRNAs, expanding our knowledge of the H/ACA family of snoRNAs.</p> <p>Conclusions</p> <p>Results indicate that <it>Giardia intestinalis </it>and <it>Trichomonas vaginalis</it>, like their distant multicellular relatives, contain a rich infrastructure of RNA-based processing. From here we can investigate the evolution of RNA processing networks in eukaryotes.</p
    • …
    corecore