153 research outputs found

    Simulation of Flux Emergence from the Convection Zone to the Corona

    Full text link
    Here, we present numerical simulations of magnetic flux buoyantly rising from a granular convection zone into the low corona. We study the complex interaction of the magnetic field with the turbulent plasma. The model includes the radiative loss terms, non-ideal equations of state, and empirical corona heating. We find that the convection plays a crucial role in shaping the morphology and evolution of the emerging structure. The emergence of magnetic fields can disrupt the convection pattern as the field strength increases, and form an ephemeral region-like structure, while weak magnetic flux emerges and quickly becomes concentrated in the intergranular lanes, i.e. downflow regions. As the flux rises, a coherent shear pattern in the low corona is observed in the simulation. In the photosphere, both magnetic shearing and velocity shearing occur at a very sharp polarity inversion line (PIL). In a case of U-loop magnetic field structure, the field above the surface is highly sheared while below it is relaxed

    A detailed phenotypic assessment of individuals affected by MFRP-related oculopathy

    Get PDF
    Purpose: To determine the spectrum of mutations and phenotypic variability within patients with mutations in membrane-type frizzled related protein gene (MFRP).Methods: Individuals were initially ascertained based on a phenotype similar to that previously published in association with MFRP mutations. Affected patients underwent a full ophthalmic examination (best-corrected visual acuity, slit-lamp examination, applanation tonometry, and fundoscopy), color fundus photography, optical coherence tomography, autofluorescence imaging, and electrophysiology. MFRP was identified by a genome-wide scan in the fourth-largest autozygous region in one consanguineous family. Sanger sequencing of all the exons and intron-exon boundaries of MFRP was undertaken in the affected individuals.Results: Seven affected individuals from four families were identified as having mutations in MFRP. Patients from two families were homozygous for mutations already previously described (c. 1143_1144 insC and c. 492 delC), while those from the other two were compound heterozygous for mutations (c. 201G>A and c. 491_492 insT, and c. 492 delC, and c. 1622_1625 delTCTG), three of which were novel. There was considerable phenotypic variability within and among families. Autofluorescence imaging revealed the central macula to be relatively well preserved. Foveal cysts and optic nerve head drusen were present in two of the four families. Electrophysiology results showed rod-cone dystrophy with mild to moderate reduction in macular function in all affected members.Conclusions: We report three novel MFRP mutations and expand the phenotypic data available on patients with MFRP mutations

    RNA-based therapies in inherited retinal diseases

    Get PDF
    Inherited retinal diseases (IRDs) are a genetically and phenotypically heterogeneous group of genetic eye disorders. There are more than 300 disease entities, and together this group of disorders affects millions of people globally and is a frequent cause of blindness or low-vision certification. However, each type is rare or ultra-rare. Characteristically, the impaired vision in IRDs is due to retinal photoreceptor dysfunction and loss resulting from mutation in a gene that codes for a retinal protein. Historically, IRDs have been considered incurable and individuals living with these blinding conditions could be offered only supportive care. However, the treatment landscape for IRDs is beginning to evolve. Progress is being made, driven by improvements in understanding of genotype-phenotype relationships, through advances in molecular genetic testing and retinal imaging. Alongside this expanding knowledge of IRDs, the current era of precision medicine is fueling a growth in targeted therapies. This has resulted in the first treatment for an IRD being approved. Several other therapies are currently in development in the IRD space, including RNA-based therapies, gene-based therapies (such as augmentation therapy and gene editing), cell therapy, visual prosthetics, and optogenetics. RNA-based therapies are a novel approach within precision medicine that have demonstrated success, particularly in rare diseases. Three antisense oligonucleotides (AONs) are currently in development for the treatment of specific IRD subtypes. These RNA-based therapies bring several key advantages in the setting of IRDs, and the potential to bring meaningful vision benefit to individuals living with inherited blinding disorders. This review will examine the increasing breadth and relevance of RNA-based therapies in clinical medicine, explore the key features that make AONs suitable for treating genetic eye diseases, and provide an overview of the three-leading investigational AONs in clinical trials

    Safety of lenadogene nolparvovec gene therapy over 5 years in 189 patients with Leber hereditary optic neuropathy

    Get PDF
    Purpose: Evaluate the safety profile of lenadogene nolparvovec (Lumevoq®) in patients with Leber hereditary optic neuropathy. Design: Pooled analysis of safety data from 5 clinical studies. Methods: A total of 189 patients received single unilateral or bilateral intravitreal injections of a recombinant adeno-associated virus 2 (rAAV2/2) vector encoding the human wild-type ND4 gene. Adverse events (AEs) were collected throughout the studies, up to 5 years. Intraocular inflammation and increased intraocular pressure (IOP) were ocular AEs of special interest. Other assessments included ocular examinations, vector bio-dissemination and systemic immune responses against rAAV2/2. Results: Almost all patients (95.2%) received 9 × 1010 viral genomes and 87.8% had at least 2 years of follow-up. Most patients (75.1%) experienced at least one systemic AE, but systemic treatment-related AEs occurred in 3 patients, none was serious. Intraocular inflammation was reported in 75.6% of lenadogene nolparvovec-treated eyes. Almost all intraocular inflammations occurred in the anterior chamber (58.8%) or in the vitreous (40.3%) and was of mild (90.3%) or moderate (8.8%) intensity; most resolved with topical corticosteroids alone. All IOP increases were mild to moderate in intensity. No AE led to study discontinuation. Bio-dissemination of lenadogene nolparvovec and systemic immune response were limited. The safety profile was comparable for patients treated bilaterally and unilaterally. Conclusions: Lenadogene nolparvovec has a good overall safety profile with excellent systemic tolerability, consistent with limited bio-dissemination. The product is well tolerated, with mostly mild ocular side effects responsive to conventional ophthalmologic treatments

    Mutations in the gene PDE6C encoding the catalytic subunit of the cone photoreceptor phosphodiesterase in patients with achromatopsia

    Full text link
    Biallelic PDE6C mutations are a known cause for rod monochromacy, better known as autosomal recessive achromatopsia (ACHM), and early‐onset cone photoreceptor dysfunction. PDE6C encodes the catalytic α′‐subunit of the cone photoreceptor phosphodiesterase, thereby constituting an essential part of the phototransduction cascade. Here, we present the results of a study comprising 176 genetically preselected patients who remained unsolved after Sanger sequencing of the most frequent genes accounting for ACHM, and were subsequently screened for exonic and splice site variants in PDE6C applying a targeted next generation sequencing approach. We were able to identify potentially pathogenic biallelic variants in 15 index cases. The mutation spectrum comprises 18 different alleles, 15 of which are novel. Our study significantly contributes to the mutation spectrum of PDE6C and allows for a realistic estimate of the prevalence of PDE6C mutations in ACHM since our entire ACHM cohort comprises 1,074 independent families.In a cohort of 176 genetically undiagnosed achromatopsia patients, we performed screening of the PDE6C gene and identified potentially pathogenic biallelic variants in 15 cases. Taking into account a previous screening approach, we calculate a prevalence of 2.4% for PDE6C mutations in our cohort, which is most probably representative for the Western population. As achromatopsia is in the focus of retinal gene therapy with four clinical trials ongoing, our study provides a valuable resource for putative gene therapy trials targeting PDE6C.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146275/1/humu23606-sup-0001-SuppMat.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146275/2/humu23606_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146275/3/humu23606.pd

    Efficacy, Safety, and Durability of Voretigene Neparvovec-rzyl in RPE65 Mutation–Associated Inherited Retinal Dystrophy: Results of Phase 1 and 3 Trials

    Get PDF
    Purpose: To report the durability of voretigene neparvovec-rzyl (VN) adeno-associated viral vector–based gene therapy for RPE65 mutation–associated inherited retinal dystrophy (IRD), including results of a phase 1 follow-on study at year 4 and phase 3 study at year 2. Design: Open-label phase 1 follow-on clinical trial and open-label, randomized, controlled phase 3 clinical trial. Participants: Forty subjects who received 1.5×1011 vector genomes (vg) of VN per eye in at least 1 eye during the trials, including 11 phase 1 follow-on subjects and 29 phase 3 subjects (20 original intervention [OI] and 9 control/intervention [CI]). Methods: Subretinal injection of VN in the second eye of phase 1 follow-on subjects and in both eyes of phase 3 subjects. Main Outcome Measures: End points common to the phase 1 and phase 3 studies included change in performance on the Multi-Luminance Mobility Test (MLMT) within the illuminance range evaluated, full-field light sensitivity threshold (FST) testing, and best-corrected visual acuity (BCVA). Safety end points included adverse event reporting, ophthalmic examination, physical examination, and laboratory testing. Results: Mean (standard deviation) MLMT lux score change was 2.4 (1.3) at 4 years compared with 2.6 (1.6) at 1 year after administration in phase 1 follow-on subjects (n = 8), 1.9 (1.1) at 2 years, and 1.9 (1.0) at 1 year post-administration in OI subjects (n = 20), and 2.1 (1.6) at 1 year post-administration in CI subjects (n = 9). All 3 groups maintained an average improvement in FST, reflecting more than a 2 log10(cd.s/m2) improvement in light sensitivity at 1 year and subsequent available follow-up visits. The safety profile was consistent with vitrectomy and the subretinal injection procedure, and no deleterious immune responses occurred. Conclusions: After VN gene augmentation therapy, there was a favorable benefit-to-risk profile with similar improvement demonstrated in navigational ability and light sensitivity among 3 groups of subjects with RPE65 mutation–associated IRD, a degenerative disease that progresses to complete blindness. The safety profile is consistent with the administration procedure. These data suggest that this effect, which is nearly maximal by 30 days after VN administration, is durable for 4 years, with observation ongoing

    De novo intrachromosomal gene conversion from OPN1MW to OPN1LW in the male germline results in Blue Cone Monochromacy

    Get PDF
    X-linked cone dysfunction disorders such as Blue Cone Monochromacy and X-linked Cone Dystrophy are characterized by complete loss (of) or reduced L- and M- cone function due to defects in the OPN1LW/OPN1MW gene cluster. Here we investigated 24 affected males from 16 families with either a structurally intact gene cluster or at least one intact single (hybrid) gene but harbouring rare combinations of common SNPs in exon 3 in single or multiple OPN1LW and OPN1MW gene copies. We assessed twelve different OPN1LW/MW exon 3 haplotypes by semi-quantitative minigene splicing assay. Nine haplotypes resulted in aberrant splicing of ≥20% of transcripts including the known pathogenic haplotypes (i.e. ‘LIAVA’, ‘LVAVA’) with absent or minute amounts of correctly spliced transcripts, respectively. De novo formation of the ‘LIAVA’ haplotype derived from an ancestral less deleterious ‘LIAVS’ haplotype was observed in one family with strikingly different phenotypes among affected family members. We could establish intrachromosomal gene conversion in the male germline as underlying mechanism. Gene conversion in the OPN1LW/OPN1MW genes has been postulated, however, we are first to demonstrate a de novo gene conversion within the lineage of a pedigree

    The need for widely available genomic testing in rare eye diseases: an ERN-EYE position statement.

    Get PDF
    BACKGROUND: Rare Eye Diseases (RED) are the leading cause of visual impairment and blindness for children and young adults in Europe. This heterogeneous group of conditions includes over 900 disorders ranging from relatively prevalent disorders such as retinitis pigmentosa to very rare entities such as developmental eye anomalies. A significant number of patients with RED have an underlying genetic etiology. One of the aims of the European Reference Network for Rare Eye Diseases (ERN-EYE) is to facilitate improvement in diagnosis of RED in European member states. MAIN BODY: Technological advances have allowed genetic and genomic testing for RED. The outcome of genetic testing allows better understanding of the condition and allows reproductive and therapeutic options. The increase of the number of clinical trials for RED has provided urgency for genetic testing in RED. A survey of countries participating in ERN-EYE demonstrated that the majority are able to access some forms of genomic testing. However, there is significant variability, particularly regarding testing as part of clinical service. Some countries have a well-delineated rare disease pathway and have a national plan for rare diseases combined or not with a national plan for genomics in medicine. In other countries, there is a well-established organization of genetic centres that offer reimbursed genomic testing of RED and other rare diseases. Clinicians often rely upon research-funded laboratories or private companies. Notably, some member states rely on cross-border testing by way of an academic research project. Consequently, many clinicians are either unable to access testing or are confronted with long turnaround times. Overall, while the cost of sequencing has dropped, the cumulative cost of a genomic testing service for populations remains considerable. Importantly, the majority of countries reported healthcare budgets that limit testing. SHORT CONCLUSION: Despite technological advances, critical gaps in genomic testing remain in Europe, especially in smaller countries where no formal genomic testing pathways exist. Even within larger countries, the existing arrangements are insufficient to meet the demand and to ensure access. ERN-EYE promotes access to genetic testing in RED and emphasizes the clinical need and relevance of genetic testing in RED
    corecore