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Abstract 

Background: Rare Eye Diseases (RED) are the leading cause of visual impairment and blindness for children and 
young adults in Europe. This heterogeneous group of conditions includes over 900 disorders ranging from relatively 
prevalent disorders such as retinitis pigmentosa to very rare entities such as developmental eye anomalies. A signifi‑
cant number of patients with RED have an underlying genetic etiology. One of the aims of the European Reference 
Network for Rare Eye Diseases (ERN–EYE) is to facilitate improvement in diagnosis of RED in European member states.

Main body: Technological advances have allowed genetic and genomic testing for RED. The outcome of genetic 
testing allows better understanding of the condition and allows reproductive and therapeutic options. The increase of 
the number of clinical trials for RED has provided urgency for genetic testing in RED. A survey of countries participat‑
ing in ERN‑EYE demonstrated that the majority are able to access some forms of genomic testing. However, there is 
significant variability, particularly regarding testing as part of clinical service. Some countries have a well‑delineated 
rare disease pathway and have a national plan for rare diseases combined or not with a national plan for genomics in 
medicine. In other countries, there is a well‑established organization of genetic centres that offer reimbursed genomic 
testing of RED and other rare diseases. Clinicians often rely upon research‑funded laboratories or private companies. 
Notably, some member states rely on cross‑border testing by way of an academic research project. Consequently, 
many clinicians are either unable to access testing or are confronted with long turnaround times. Overall, while the 
cost of sequencing has dropped, the cumulative cost of a genomic testing service for populations remains consider‑
able. Importantly, the majority of countries reported healthcare budgets that limit testing.

Short conclusion: Despite technological advances, critical gaps in genomic testing remain in Europe, especially in 
smaller countries where no formal genomic testing pathways exist. Even within larger countries, the existing arrange‑
ments are insufficient to meet the demand and to ensure access. ERN‑EYE promotes access to genetic testing in RED 
and emphasizes the clinical need and relevance of genetic testing in RED.
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Background
Technological advances have allowed genetic and 
genomic testing for Rare Eye Diseases (RED). The out-
come of genetic testing allows better understanding of 
RED and allows reproductive and therapeutic options. 
Despite these advances critical gaps in testing remain in 
European member states, especially in smaller countries. 
Even within larger countries, the existing arrangements 
are insufficient to meet the demand and to ensure equity 
of access. The European Reference Network (ERN) initia-
tive, a cross-border cooperation between healthcare pro-
viders and researchers from across the European Union, 
has been created to improve diagnosis and treatment of 
complex or rare medical conditions that require special-
ised treatment, knowledge and resources [1]. ERN-EYE 
promotes access to genetic testing in RED and empha-
sizes the clinical need and relevance of genetic testing in 
RED.

Main text
There are 24 thematic ERNs, including ERN-EYE, whose 
focus is on RED [2]. The ERNs seek to aggregate health-
care providers in order to improve patient access to 
healthcare information and thereby increase treatment 
options. They aim to do this by (i) creating innovative 
care models, in particular using digital technologies, (ii) 
enhancing research through the increase of the size and 
power of clinical studies as well as epidemiological regis-
tries and (iii) enabling sharing of costly resources which 
ultimately leads to more sustainable national healthcare 
systems. The overarching objective is to improve health 
outcomes for the large numbers of patients in the EU suf-
fering from rare and often complex conditions.

RED are the leading cause of visual impairment and 
blindness for children and young adults in Europe [3, 4]. 
This heterogeneous group of conditions includes over 
900 disorders ranging from relatively prevalent disorders 
such as retinitis pigmentosa (estimated prevalence of 1 in 
4,000) to very rare entities described only once or twice 
in medical literature [5]. ERN-EYE is structured around 
4 clinical thematic working groups (Retina, Neuro-oph-
thalmology, Paediatric, Anterior segment) and 6 trans-
versal working groups (Low vision, Genetic diagnostic, 
Registries, Research, Education / Training, Communi-
cation) [2]. Notably, the ERN-EYE has organised work-
shops on diverse areas ranging from clinical terminology 
standardisation (Mont Sainte-Odile workshop, 2017) to 
genomic testing (Florence workshop, 2018) and clinical 
trials (Strasbourg workshop, 2019) [6].

The advance towards personalization of medicine is 
accelerating [7]. For rare diseases, including RED, there 
is now a general understanding that patients often expe-
rience delayed diagnosis, which in turn leads to poor 
access to appropriate treatment and management proto-
cols. For RED, a significant number of patients have an 
underlying genetic etiology. Effective and individualized 
approaches to clinical management are consequently 
dependent upon a comprehensive means of delivering 
genetic or genomic testing [8]. Genomic testing allows 
a precise diagnosis of highly heterogeneous disorders, 
improves counselling (e.g. understanding prognosis; 
facilitating reproductive decision-making) and is increas-
ingly important in directing treatment options [9].

Genomic approaches can improve diagnosis 
and management of RED
There are now numerous examples demonstrating clini-
cal benefit of genomic testing in RED. For example, for 
oculocutaneous albinism, genetic diagnostic approaches 
provide a positive diagnosis in over 75% of cases. This not 
only achieves a diagnosis in early life for individuals with 
reduced vision but also allows identification of syndromic 
forms including the 1 in 30 cases of apparently uncompli-
cated albinism that represent unsuspected cases of Her-
mansky-Pudlak syndrome implying specific surveillance 
and care [10].

Leber Congenital Amaurosis (LCA) is the earliest onset 
and most severe form of inherited retinal diseases (IRD) 
[11]. This group of conditions is caused by genetic altera-
tions in over 20 genes and is also the field where most 
clinical research is performed to date [12–14]. Some 
examples are given where comprehensive genomic test-
ing leads to a molecular diagnosis and offers therapeutic 
perspectives. A first example are pathogenic variants in 
the RPE-specific gene RPE65 encoding a protein mem-
ber of the visual cycle that regenerates retinal. The recent 
FDA and EMA approval of voretigene neparvovec-rzyl 
for the treatment of LCA patients with biallelic RPE65 
mutations, as a landmark of novel gene-directed therapy, 
paved the way for successful treatment [15–18]. A second 
example is a recurrent deep-intronic pathogenic variant 
in CEP290, a gene encoding a key component of the con-
necting cilium. There are promising clinical studies sug-
gesting potential for intravitreally delivered antisense 
oligonucleotide (AON) therapy and for gene editing using 
CRISPR/Cas9 [19–21]. Pathogenic variants in CEP290 
and other cilia-related genes (e.g. IQCB1) can predispose 
for multi-systemic complications including renal failure 
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[22, 23]. Other examples requiring an early diagnosis are 
AILP1- and GUCY2D-associated LCA given the ongoing 
therapeutic efforts [24–27].

Moreover, CLN3-associated Batten disease, first diag-
nosed by ophthalmologists, is another example where 
early diagnosis is critical to direct management, coun-
seling, and support for young patients and their families. 
The systemic therapeutic options for this disease in early-
phase clinical trial benefit from a start at the earliest stage 
of disease [28, 29].

Other examples are pathogenic variants identified in 
disease genes implicated in achromatopsia [30], choroi-
deremia [31], Stargardt disease (STGD1), X-linked reti-
nitis pigmentosa and other IRD [33, 34] that are eligible 
for the huge range of clinical trials being undertaken 
currently [12–14]. Specifically, rare and recurrent deep-
intronic pathogenic variants (total: 355) in ABCA4 asso-
ciated with STGD1 in ~10% of cases allow the design 
of novel RNA splice modulation therapies using AONs 
[35–37].

Patient groups, clinicians and scientists together rec-
ognize an urgent need for widespread availability of 
genomic testing for RED to avoid the so-called ‘diagnos-
tic odyssey’ - an extended and distressing period, often 
unsuccessful, characterised by multiple sequential inves-
tigations. By providing a definitive molecular diagnosis 
this can strongly facilitate clinical and personal decision-
making [38, 39].

What is the current picture of genomic testing in RED?
Adoption of genomic testing for RED has accelerated 
considerably over the past 10 years due to the availabil-
ity of ‘next generation sequencing’ (NGS), a technological 
advance allowing massively parallel sequencing of mul-
tiple nucleic acid targets [38]. This technique is increas-
ingly being deployed in the clinical diagnostic setting and 
it has allowed affordable analysis of complete genomes 
[40, 41].

A survey of countries participating in ERN-EYE dem-
onstrated that the majority are able to access some forms 
of genomic testing. However, access is still far from uni-
versal and there is significant variability of delivery, par-
ticularly in the degree to which different countries are 
able to provide testing as part of clinical service. It is not 
uncommon for clinicians to have to rely partly or com-
pletely upon either research-funded laboratories (for 
example in the Czech Republic) or private companies. 
Notably, some member state relies mainly on cross-bor-
der testing either by way of an academic research project. 
For example, research-based sequencing of the entire 
ABCA4 gene for variants associated with STGD1 in the 
Netherlands and Belgium has yielded bi-allelic variants 
in ~500 probands ascertained worldwide, including many 

undiagnosed families from Eastern European countries 
[35–37]. Currently 2,000 STGD1 and STGD-like macu-
lopathy probands have been sequenced for mutations in 
ABCA4 and PRPH2, solving ~50% of the cases.

In the US, Invitae has announced a free sequencing 
service for RED probands from the US based on a part-
nership with Spark Therapeutics [41]. The Foundation 
Fighting Blindness, in partnership with Blueprint Genet-
ics and InformedDNA, offers free genetic testing and 
counselling to individuals living in the US or US territo-
ries and clinically diagnosed with an IRD [42].

In Europe, some countries have a very well deline-
ated rare disease pathway (summarized in Table 1). In 
France for example, there is a long-standing national 
centralized organizational plan for rare diseases (Plan 
National Maladies Rares) [43] now combined with a 
centralized national plan for genomics in medicine 
(Plan France Médecine Génomique) [44]. In the UK, 
a small number of Genomic Laboratory Hubs and a 
highly productive national initiative (100,000 Genomes; 
Genomic England) allow relatively frictionless access 
to testing [45]. In Belgium and the Netherlands there is 
a well-established organization of genetic centres with 
good access to reimbursed genomic testing of RED and 
other rare diseases. In Germany, academic genetic cen-
tres, private genetic laboratories but also industrial lab-
oratories offer this service. Other member states such 
as Italy rely on regional organisation where University 
centres have, over time, developed significant expertise 
in specific RED fields.

Within this overall picture, critical gaps in testing 
remain, especially in a number of smaller countries 
where no formal genomic testing structures exist. 
Notably, even within larger countries, the existing 
arrangements are insufficient to meet the demand and 
to ensure equity of access. Consequently, across the 
EU there are large numbers of clinicians and affected 
families who are either unable to access testing or who 
have to wait for considerable periods of time to receive 
results. Overall, while the cost of genomic sequenc-
ing has dropped at an extraordinary rate over the past 
decade, the cumulative cost of providing a comprehen-
sive genomic testing service for populations remains 
considerable. Importantly, the majority of EU coun-
tries reported healthcare budgets that limit testing 
despite the fact that increase in demand (i.e. numbers 
of patients requiring testing) is inevitable [46].

Clinical utility: making the argument to justify genomic 
testing
It is perhaps not surprising that translation of clini-
cal, technological and research advances into routine 
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healthcare is slow. Undoubtedly, the adoption of a 
clinically relevant intervention—in this case, genomic 
testing—is more likely where its ability to influence 
management and health outcomes has been clearly 
demonstrated. Therefore, a focus on clinical benefit 
(‘clinical utility’) of genomic testing remains an urgent 
requirement to provide a clear evidence for widespread 
implementation [47, 48]. To date, compiling such evi-
dence for RED has been slow. However, evidence of 
clinical utility has been demonstrated for small groups 
of patients [49–53]. Additional, well-designed studies 
of broader scale are becoming available [7, 54].

Training and mainstreaming of genomic medicine
Genomic testing is only one of the barriers that exist for 
effective diagnosis and management for individuals with 
RED. It is clear that the number of healthcare profession-
als and genetic counsellors who specialise in ophthalmic 
genetics is another important limiting factor, even in set-
tings where genomic testing is readily available. Notably, 
at present, care for families with RED is generally deliv-
ered by a few “super-specialists” in ophthalmic genetics 
who work within a relatively small number of academic 
centres. Given the cumulative prevalence and overall 
number of RED, and the increasing recognition of clinical 
need, this dependence of small groups of experts is likely 
to be unsustainable.

Broadening access to genomic testing will require an 
expansion of the group of clinicians who are willing and 
able to order such diagnostic tests. Since this requires 
specialist knowledge, training of a wider group of clini-
cians at all strata of seniority will be necessary. While in 
the longer term this sits within medical schools and pro-
fessional curricula, in the shorter term it will be critical to 
provide professional development that enables up-skill-
ing of existing clinical workforces. There will be different 
levels of skills required for different groups of clinicians. 
Paediatric ophthalmologists and medical retina special-
ists who encounter RED more frequently are perhaps the 
first who need to acquire these new skills and to enhance 
their understanding of the care pathways, consent issues 
and utilisation of genomic knowledge in clinical manage-
ment. However, it is expected that in the not-so-distant 
future, broader applications of genomic medicine such as 
pharmacogenetics and complex genetics will be increas-
ingly important to all clinicians.

Technological advances of DNA sequencing technolo-
gies have tremendously expanded the ability of health-
care systems to diagnose RED. This gives great hope to 
affected families. Harnessing the motivating power of 
patient groups and hearing the patient voice is critical 
in promoting systematic change in healthcare provision. 
The ERN-EYE initiative has been strongly influenced by 

patient bodies and advocates. These interactions have 
greatly enhanced our understanding of how a defini-
tive genetic diagnosis can promote closure, lead to early 
resolution of uncertainty, allow better understanding of 
the condition and, crucially, inform reproductive and life 
planning. However, ultimately, implementation of such 
advanced diagnostic strategies will require considerable 
increased investment. Thus, there is an urgent need for 
professionals to provide broad evidence of clinical benefit 
and utility. The extraordinary acceleration in the num-
ber of clinical trials for RED in general and for inherited 
retinal disorders in particular, has provided considerable 
urgency and impetus.

Conclusions

• Technological advances have allowed genomic test-
ing for RED.

• Despite these advances critical gaps in testing 
remain, especially in smaller countries where no for-
mal genomic testing structures exist. Even within 
larger countries, the existing arrangements are insuf-
ficient to meet the demand and to ensure equity of 
access.

• The outcome of genetic testing allows better under-
standing of the condition and allows reproductive 
and therapeutic options. The increase of the number 
of clinical trials for RED has provided considerable 
urgency for genetic testing in RED.

• ERN-EYE promotes access to genetic testing in RED 
and emphasizes the clinical need and relevance of 
genetic testing in RED.
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